Rc генератор принцип действия. Rc-генераторы

Генератор – это автоколебательная система, формирующая импульсы электрического тока, в которой транзистор играет роль коммутирующего элемента. Изначально, с момента изобретения, транзистор позиционировался как усилительный элемент. Презентация первого транзистора произошла в 1947 году. Презентация полевого транзистора произошла несколько позже – в 1953 г. В генераторах импульсов он играет роль переключателя и только в генераторах переменного тока он реализует свои усилительные свойства, одновременно участвуя в создании положительной обратной связи для поддержки колебательного процесса.

Наглядная иллюстрация деления частотного диапазона

Классификация

Транзисторные генераторы имеют несколько классификаций:

  • по диапазону частот выходного сигнала;
  • по типу выходного сигнала;
  • по принципу действия.

Диапазон частот – величина субъективная, но для стандартизации принято такое деление частотного диапазона:

  • от 30 Гц до 300 кГц – низкая частота (НЧ);
  • от 300 кГц до 3 МГц – средняя частота (СЧ);
  • от 3 МГц до 300 МГц – высокая частота (ВЧ);
  • выше 300 МГц – сверхвысокая частота (СВЧ).

Таково деление частотного диапазона в области радиоволн. Существует звуковой диапазон частот (ЗЧ) – от 16 Гц до 22 кГц. Таким образом, желая подчеркнуть диапазон частот генератора, его называют, например ВЧ или НЧ генератором. Частоты звукового диапазона в свою очередь также подразделяются на ВЧ, СЧ и НЧ.

По типу выходного сигнала генераторы могут быть:

  • синусоидальные – для генерации синусоидальных сигналов;
  • функциональные – для автоколебания сигналов специальной формы. Частный случай – генератор прямоугольных импульсов ;
  • генераторы шума – генераторы широкого спектра частот, у которых в заданном диапазоне частот спектр сигнала равномерный от нижнего до верхнего участка частотной характеристики.

По принципу действия генераторов:

  • RC-генераторы;
  • LC-генераторы;
  • Блокинг-генераторы – формирователь коротких импульсов.

Ввиду принципиальных ограничений обычно RC-генераторы используются в НЧ и звуковом диапазоне, а LC-генераторы в ВЧ диапазоне частот.

Схемотехника генераторов

RC и LC генераторы синусоидальные

Наиболее просто реализуется генератор на транзисторе в схеме емкостной трехточки – генератор Колпитца (рис. ниже).

Схема генератора на транзисторе (генератор Колпитца)

В схеме Колпитца элементы (C1), (C2), (L) являются частотозадающими. Остальные элементы представляют собой стандартную обвязку транзистора для обеспечения необходимого режима работы по постоянному току. Такой же простой схемотехникой обладает генератор, собранный по схеме индуктивной трехточки – генератор Хартли (рис. ниже).

Схема трехточечного генератора с индуктивной связью (генератор Хартли)

В этой схеме частота генератора определяется параллельным контуром, в который входят элементы (C), (La), (Lb). Конденсатор (С) необходим для образования положительной обратной связи по переменному току.

Практическая реализация такого генератора более затруднительна, поскольку требует наличия индуктивности с отводом.

И тот и другой генераторы автоколебания находят преимущественно применение в СЧ и ВЧ диапазонах в качестве генераторов несущих частот, в частотозадающих цепях гетеродинов и так далее. Регенераторы радиоприемников также основаны на генераторах колебаний. Указанное применение требует высокой стабильности частоты, поэтому практически всегда схема дополняется кварцевым резонатором колебаний.

Задающий генератор тока на основе кварцевого резонатора имеет автоколебания с очень высокой точностью установки значения частоты ВЧ генератора. Миллиардные доли процента далеко не предел. Регенераторы радиостанций используют только кварцевую стабилизацию частоты.

Работа генераторов в области низкочастотного тока и звуковой частоты связана с трудностями реализации высоких значений индуктивности. Если быть точнее, то в габаритах необходимой катушки индуктивности.

Схема генератора Пирса является модификацией схемы Колпитца, реализованной без применения индуктивности (рис. ниже).

Схема генератора Пирса без применения индуктивности

В схеме Пирса индуктивность заменена кварцевым резонатором, что позволило избавиться от трудоемкой и громоздкой катушки индуктивности и, в то же время, ограничило верхний диапазон колебаний.

Конденсатор (С3) не пропускает постоянную составляющую базового смещения транзистора на кварцевый резонатор. Такой генератор может формировать колебания до 25 МГц, в том числе и звуковой частоты.

Работа всех вышеперечисленных генераторов основана на резонансных свойствах колебательной системы, составленной из емкости и индуктивности. Соответственно, частота колебаний определяется номиналами этих элементов.

RC генераторы тока используют принцип фазового сдвига в резистивно-емкостной цепи. Наиболее часто применяется схема с фазосдвигающей цепочкой (рис. ниже).

Схема RC генератора с фазосдвигающей цепочкой

Элементы (R1), (R2), (C1), (C2), (C3) выполняют сдвиг фазы для получения положительной обратной связи, необходимой для возникновения автоколебаний. Генерация возникает на частотах, для которых фазовый сдвиг оптимален (180 гр). Фазосдвигающая цепь вносит сильное ослабление сигнала, поэтому такая схема имеет повышенные требования к коэффициенту усиления транзистора. Менее требовательна к параметрам транзистора схема с мостом Вина (рис. ниже).

Схема RC генератора с мостом Вина

Двойной Т-образный мост Вина состоит из элементов (C1), (C2), (R3) и (R1), (R2), (C3) и представляет собой узкополосный заграждающий фильтр, настроенный на частоту генерации. Для всех остальных частот транзистор охвачен глубокой отрицательной связью.

Функциональные генераторы тока

Функциональные генераторы предназначены для формирования последовательности импульсов определенной формы (форму описывает некая функция – отсюда и название). Наиболее часто встречаются генераторы прямоугольных (если отношение длительности импульса к периоду колебаний составляет ½, то такая последовательность называется «меандр»), треугольных и пилообразных импульсов. Самый простой генератор прямоугольных импульсов – мультивибратор, подается как первая схема начинающих радиолюбителей для сборки своими руками (рис. ниже).

Схема мультивибратора – генератора прямоугольных импульсов

Особенностью мультивибратора является то, что в нем можно использовать практически любые транзисторы. Длительность импульсов и пауз между ними определяется номиналами конденсаторов и резисторов в базовых цепях транзисторов (Rb1), Cb1) и (Rb2), (Cb2).

Частота автоколебания тока может изменяться от единиц герц до десятков килогерц. ВЧ автоколебания на мультивибраторе реализовать невозможно.

Генераторы треугольных (пилообразных) импульсов, как правило, строятся на основе генераторов прямоугольных импульсов (задающий генератор) путем добавления корректирующей цепочки (рис. ниже).

Схема генератора треугольных импульсов

Форма импульсов, близкая к треугольной, определяется напряжением заряда-разряда на обкладках конденсатора С.

Блокинг-генератор

Предназначение блокинг-генераторов состоит в формировании мощных импульсов тока, имеющих крутые фронты и малую скважность. Длительность пауз между импульсами намного больше длительности самих импульсов. Блокинг-генераторы находят применение в формирователях импульсов, сравнивающих устройствах, но основная область применения – задающий генератор строчной развертки в устройствах отображения информации на основе электронно-лучевых трубок. Также блокинг-генераторы с успехом применяются в устройствах преобразования электроэнергии.

Генераторы на полевых транзисторах

Особенностью полевых транзисторов является очень высокое входное сопротивление, порядок которого соизмерим с сопротивлением электронных ламп. Перечисленные выше схемотехнические решения универсальны, просто они адаптированы под использование различных типов активных элементов. Генераторы Колпитца, Хартли и другие, выполненные на полевом транзисторе, отличаются только номиналами элементов.

Частотозадающие цепи имеют те же соотношения. Для генерирования ВЧ колебаний несколько предпочтительнее простой генератор, выполненный на полевом транзисторе по схеме индуктивной трехточки. Дело в том, что полевой транзистор, имея высокое входное сопротивление, практически не оказывает шунтирующее действие на индуктивность, а, следовательно, работать высокочастотный генератор будет стабильнее.

Генераторы шума

Особенностью генераторов шума является равномерность частотной характеристики в определенном диапазоне, то есть амплитуда колебаний всех частот, входящих в заданный диапазон, является одинаковой. Генераторы шума находят применение в измерительной аппаратуре для оценки частотных характеристик проверяемого тракта. Генераторы шума звукового диапазона часто дополняются корректором частотной характеристики с целью адаптации под субъективную громкость для человеческого слуха. Такой шум называется «серым».

Видео

До сих пор существует несколько областей, в которых применение транзисторов затруднено. Это мощные генераторы СВЧ диапазона в радиолокации, и там, где требуется получение особо мощных импульсов высокой частоты. Пока еще не разработаны мощные транзисторы СВЧ диапазона. Во всех других областях подавляющее большинство генераторов выполняется исключительно на транзисторах. Причин этому несколько. Во-первых, габариты. Во-вторых, потребляемая мощность. В-третьих, надежность. Вдобавок ко всему, транзисторы из-за особенностей своей структуры очень просто поддаются миниатюризации.

Применение генераторов с колебательными контурами для генерирования колебаний низких частот (ниже 10 кГц) затруднено из-за значительно увеличивающихся номиналов катушек индуктивности и конденсаторов, что влечет за собой увеличение размеров и стоимости генератора.

Поэтому в настоящее время для генерирования низких и инфранизких частот широко используются RC-генераторы, в которых вместо колебательного контура используются RC-фильтры.

RC-генераторы, работая в сравнительно широком диапазоне частот от долей герца до нескольких мегагерц, обеспечивают достаточную стабильность колебаний и имеют малые габариты и массу.

Применение полевых транзисторов в схемах RC-генераторов выгодно отличает их от биполярных транзисторов возможностью использования в цепи положительной обратной связи высокоомных резисторов, что в свою очередь позволяет использовать конденсаторы с меньшими номиналами, обладающие большей стабильностью.

Простейшие RC-генераторы на изображены на рис. 1. Как известно, условия возбуждения генератора требуют, чтобы цепь обратной связи изменяла на 180° (для однокаскадного генератора) фазу сигнала, поступающего со стоковой нагрузки в цепь затвора.

В схеме генератора, приведенной на рис. 1, а, это достигается выполнением цепи обратной связи из нескольких последовательно включенных простых RC-звеньев. Кроме того, ослабление сигнала при прохождении цепи обратной связи должно компенсироваться усилением каскада.

Для цепей с одинаковыми по значению элементами R и С условие баланса фаз на генерируемой частоте f 0 выполняется при следующих соотношениях :

для трёхзвенных f 0 =0,065/RC;

для четырёхзвенных f 0 =0,133/RC

Рис. 1. Схемы простейших RC-генераторов.

а - с фазирующей RC-цепочкой; б - с истоковым повторителем; в - с Т-образным RC-мостом.

Для трёхзвенной RC-цепи обратной связи требуемый коэффициент усиления каскада должен быть больше 29 , а в четырёхзвенной RC-цепи не менее 18,4.

Для повышения устойчивости работы генератора (из-за шунтирующего действия цепью обратной связи резистора нагрузки Rc) часто вводят дополнительный каскад - истоковый повторитель (рис. 1, б), имеющий высокое входное сопротивление.

Схема генератора с двойным Т-образным RC-фильтром (рис. 1, в), элементы которого выбраны следующим образом: С1=С2=С; С3=С/0,207; R1=R2=R; R3=0,207R - функционирует при условии, если коэффициент усиления каскада не менее 11. При этом частота колебаний

Рассмотренные простейшие RC-генераторы на ПТ не нашли широкого применения из-за присущих им недостатков.

Первый недостаток - это необходимость получения большого коэффициента усиления каскада, который у генератора с трёхзвенной цепью обратной связи должен быть не менее 29, Практическая реализация такого коэффициента усиления затруднительна из-за малого значения крутизны ПТ. Если учесть, что для улучшения формы генерируемых колебаний вводится отрицательная обратная связь, то коэффициент усиления каскада должен быть еще больше.

Второй недостаток - невозможность перестройки в широком диапазоне частот генераторов, выполненных по схеме с RC-цепочка-ми и Т-образным мостом в цепи обратной связи.

ГЕНЕРАТОРЫ, ПЕРЕСТРАИВАЕМЫЕ В ШИРОКОМ ДИАПАЗОНЕ ЧАСТОТ

Наиболее широкое применение среди RC-генераторов нашла схема с фазовым RC-мостом (генератор на мосте Вина), принципиальная схема которого изображена на рис. 2. К достоинствам подобной схемы следует отнести малое затухание и нулевой сдвиг фаз в цепи обратной связи на частоте генерации.

Таким образом, при включении фазового RC-моста для выполнения условия баланса фаз необходимо, чтобы усилитель генератора обеспечивал сдвиг фаз 360°.

Частота генерации при равенстве R1=R2=R и С1=С2=С определяется выражением

f 0 =1/2RCπ (1)

На этой частоте затухание фазового RС-моста минимально и равно 3. (Затухание β - величина ослабления, которое вносит фазовый RC-мост в проходящий сигнал в зависимости от расстройки Δf - определяется по выражению β=(9+(2Δf) 2 /f 0) 1/2) Отсюда следует, что минимальный коэффициент усиления, при котором удовлетворяется условие баланса амплитуд, должно быть не менее 3. Благодаря малому значению требуемого усиления появляется возможность введения глубокой отрицательной обратной связи, что ведет к уменьшению уровня нелинейных искажений при работе в широком диапазоне частот.

В схеме рис. 2, а отрицательная обратная связь осуществляется за счет резистора в цепи истока транзистора T1 и введения цепочки R5C3. В качестве резистора R5 использовался малоинерционный термистор ТВД-4, резисторы R1, R2 - типа ПТМН, а конденсаторы С1 и С2 - типа КСО-Г. При указанных на схеме номиналах частота генерации f 0 =1500 Гц. При изменении температуры в диапазоне от 10 до 50° С была получена относительная нестабильность частоты

Δf/f=0,05% на 10° С.

Фазовый RC-мост имеет в своем составе всего по два одноименных элемента; следовательно, его можно перестраивать в широком диапазоне частот, изменяя значение только двух элементов R1, R2 или С1, С2), что делает перестройку генераторов с такими мостами конструктивно удобной.

На рис. 2, б приведена схема перестраиваемого генератора низкой частоты с фазовым RC-мостом. Частота генерируемых колебаний плавно перестраивается с помощью сдвоенного потенциометра R2, R3. Усилитель генератора двухкаскадный с непосредственной связью. Для стабилизации амплитуды колебаний генератора и его режима работы введена глубокая отрицательная обратная связь как по постоянному, так и переменному току (цепочка R8, R6, R5) Для перекрытия всего звукового диапазона следует ввести переключатель, который одновременно изменял бы емкости конденсаторов RC и С2 в обоих плечах моста.

Рис. 2. Принципиальные схемы генераторов с фазовым RС-мостом.

а - с двухкаскадным усилителем и ёмкостной связью; б - с двухкаскадным усилителем и непосредственной связью.

Рис. 3. Генератор, перестраиваемый в широком диапазоне

а - принципиальная схема; б - структурная схема.

Более сложная схема RС-генератора с использованием полевых транзисторов, позволяющая перестраивать частоту в декадном диапазоне, изображена на рис. 3. Для параметров, указанных на схеме, частота генератора лежит в диапазоне 500 кГц - 5 мГц; однако, изменив ёмкости конденсаторов, можно получить частоты в других диапазонах .

Два фазовращателя, фазоинвертор, усилитель и аттенюатор соединяются таким образом, что образуют петлю обратной связи. Схема будет генерировать колебания с частотой, при которой полный фазовый сдвиг составляет 360°. На этой частоте каждый из двух идентичных фазовращателей обеспечивает фазовый сдвиг на 90°.

Управляемый напряжением фазовращатель состоит из конденсатора C1 и транзистора Т2.

Транзисторы Т3, Т4 и конденсатор С3 образуют второй фазовращатель, который работает аналогично первому. Благодаря высокому сопротивлению фазовращателей отпадает необходимость в буферных каскадах. Затворы транзисторов Т2 и Т4 заземлены по переменному току и, следовательно, могут быть соединены. Транзистор Т5 предназначен для усиления сигнала.

Транзистор Т7 и резистор R6 образуют управляемый напряжением аттенюатор, при этом транзистор Т7 используется в качестве управляемого резистора.

Амплитудный детектор состоит из усилителя на транзисторе Т6, диодного детектора Д1 и фильтра R5C5. Когда амплитуда входного сигнала увеличивается, напряжение на затворе транзистора Т7 становится более отрицательным, при этом возрастает динамическое сопротивление транзистора и уменьшается коэффициент усиления в петле обратной связи.

СТАБИЛИЗАЦИЯ АМПЛИТУДЫ КОЛЕБАНИЙ

Свойство полевого транзистора изменять сопротивление канала в зависимости от приложенного к затвору управляющего напряжения нашло достаточно широкое применение в генераторах для автоматической стабилизации уровня выходного сигнала.

На рис. 4, а приведена схема RC-генератора синусоидальных колебаний с регулируемой отрицательной обратной связью . Двухкаскадный усилитель на полевых транзисторах Т1 и Т3 охвачен положительной обратной связью через элементы R1-R4, С1, С3. Отрицательная обратная связь осуществляется через делитель, состоящий из резистора R6 и управляемого сопротивления канала полевого транзистора Т2 Установление стационарной амплитуды происходит за счет воздействия UВых (через детектор Д1 и его элементов R7, С5) на глубину отрицательной обратной связи и на режим питания транзистора Т1. Инерционность АРУ определяется в основном ёмкостью конденсатора С5 и сопротивлением резистора R7 . Такая автоматически регулируемая отрицательная обратная связь позволяет повысить стабильность характеристик генератора по сравнению с обычной схемой при изменении напряжений питания и температуры окружающей среды. При изменении питания от 18 до 10 В амплитуда выходного сигнала снижалась на 8%.

Рис. 4. Генераторы со стабилизацией амплитуды генерируемых колебаний.

а - RС-генератор с регулируемой ООС; б - LC-генератор с аттенюатором на ПТ.

Несколько иначе осуществляется автоматическая стабилизация уровня выходного сигнала генератора, принципиальная схема которого изображена на рис. 4, б . Напряжение сток - исток полевого транзистора Т1 регулируется переменным резистором R3, установленным в цепи затвора второго транзистора Т2. Часть выходного напряжения через трансформатор L1, L2 поступает на выпрямитель Д1 и фильтр R3C7. В зависимости от положения потенциометра R3 изменяется рабочая точка полевого транзистора, изменяется сопротивление его канала и соответственно амплитуда сигнала на выходе генератора. Потенциометром R3 устанавливают необходимую амплитуду выходного напряжения, которая в дальнейшем автоматически поддерживается на заданном уровне.

Как видно из приведённых выше примеров, использование полевых транзисторов в схемах автоматической стабилизации выходного напряжения генераторов позволяет значительно упростить подобные схемы и уменьшить необходимую мощность управления регулируемого элемента.

ЧМ ГЕНЕРАТОРЫ

В автоматике и телемеханике, измерительной технике возникает необходимость в широкополосной частотной модуляции при низкой несущей частоте. Так, например, в радиотелеметрии с частотным разделением каналов каждому- каналу отводится своя поднесущая частота. Генераторы поднесущих частот - это низкочастотные генераторы, частоты которых промодулированы сигналами от датчиков. Применение LC-генераторов в таких системах нежелательно из-за громоздкости выполнения в низкочастотном диапазоне. Поэтому в качестве задающего частотно-модулированного генератора поднесущей частоты используется RС-генератор.

Частота RС-генератора, как уже говорилось выше, определяется параметрами фазирующей RС-цепочки, изменяя которые определенным образом, осуществляют частотную модуляцию колебаний генератора. Для получения линейной модуляционной характеристики необходимо, чтобы одновременно по линейному закону изменялись отношения 1/R или 1/С фазирующей цепочки.

Рис. 5. ЧМ генератор на ПТ, а - принципиальная схема; б - модуляционная характеристика.

В качестве перестраиваемых напряжением ёмкостей применяются полупроводниковые диоды и транзисторы, используя зависимость ёмкости p-n перехода от обратного напряжения. Существенным недостатком подобного способа является большая нелинейность модуляционной характеристики ЧМ генератора из-за нелинейного изменения ёмкости от приложенного напряжения.

Полупроводниковые диоды и биполярные транзисторы можно использовать и в качестве переменных сопротивлений. Однако такому способу получения ЧМ свойственны следующие недостатки : нелинейность модуляционной характеристики при больших девиациях частоты; большая амплитудная модуляция; плохая развязка источника модулирующего сигнала и автогенератора; значительная мощность, потребляемая управляющей цепью.

Перечисленных недостатков лишен способ осуществления ЧМ с помощью полевых транзисторов. Применение ПТ в качестве переменных сопротивлений в фазирующей цепи RС-генератора позволяет реализовать их важное достоинство - линейную зависимость проводимости канала от управляющего напряжения и высокое входное сопротивление частотного модулятора.

На рис. 5 изображена принципиальная схема ЧМ генератора с фазовым RС-мостом и его модуляционная характеристика для ПТ (Т{Г2) типа КП103Ж и КП103М, используемых в качестве переменных резисторов.

Резисторы R1 и R2 включены для уменьшения глубины девиации до необходимой; кроме того, используя резисторы с отрицательным ТКС, можно уменьшить влияние температурных изменений сопротивления канала ПТ на стабильность частоты генератора. С помощью источника смещения Eсм устанавливают необходимое значение сопротивления каналов ПТ при управляющем (модулирующем) сигнале UBX=0.

МУЛЬТИВИБРАТОРЫ

Релаксационные генераторы низких частот имеют большую постоянную времени. В мультивибраторах, выполненных на биполярных транзисторах, для получения большой постоянной времени используются электролитические конденсаторы с большой ёмкостью, обладающие невысокой стабильностью. Высокое же входное сопротивление полевых транзисторов позволяет получать необходимую постоянную времени в релаксационных схемах без использования конденсаторов с большой ёмкостью. Поэтому в тех случаях, когда требуется реализовать постоянные времени примерно несколько секунд или минут, целесообразно использовать полевые транзисторы.

В схеме, изображенной на рис. 6, а, два полевых транзистора включены по схеме истоковых повторителей, а два биполярных транзистора являются переключателями. Принцип работы схемы аналогичен принципу работы обычного мультивибратора, причём комбинацию биполярного и полевого транзистора следует рассматривать как некоторый активный элемент. Таким образом, в схему вносится высокое входное сопротивление полевых транзисторов и одновременно обеспечивается большое полное усиление. Биполярные транзисторы не входят в состояние насыщения, так как напряжение их коллекторов питает стоки полевых транзисторов. В результате такого соединения мультивибратор устойчиво самовозбуждается; поскольку рабочие точки транзисторов смещены в линейную область, любое изменение входного тока вызывает изменение коллекторного напряжения. Эта схема хорошо работает и на высоких частотах.

Рис. 6. Схемы мультивибраторов на ПТ.

а - с ненасыщенными биполярными транзисторами; б - с насыщенными биполярными транзисторами.

Длительность пребывания мультивибратора в каждом из состояний определяется разрядом конденсатора С1 или С2 через резистор цепи затвора. Когда напряжение достигает значения, равного напряжению отсечки полевого транзистора, изменение тока истока заставляет схему перейти в другое состояние. Если ёмкость каждого конденсатора С1 и С2 равна 4 мкФ, то, изменяя R1 и R2 в сторону увеличения, можно повысить длительность периода мультивибратора от 8 мс до 6 мин. Если ёмкость каждого из конденсаторов выбрать равной 100 пФ, то частоту можно изменить от 100 Гц до 3 мГц

Несколько иначе выполнен мультивибратор, схема которого изображена на рис. 6, б . Рассмотрим принцип действия этой схемы. Допустим, что транзистор Т1 переходит в состояние насыщения, тогда на затворе Т4 появляется положительный потенциал и транзисторы Т4 и Т2 закрываются. Скачок напряжения на коллекторе Т2 приводит к надежному открыванию транзисторов Т1 и Т3. Ток смещения, текущий к затвору Т3 через резистор R2, поддерживает его в этом состоянии. Конденсатор С1 разряжаясь через резистор уменьшает напряжение смещения на затворе Т4. Когда напряжение Uзи транзистора Т4 уменьшается до напряжения отсечки, транзисторы Т4 и Т2 начинают проводить и быстро открываются, в то время как Т1 и Т3 закрываются. Длительность импульса мультивибратора определяется по формуле

(2)

где Ес - напряжение источника питания.

При номиналах деталей, указанных на схеме рис. 8, б, получена длительность импульса примерно 25 с.

ГЕНЕРАТОРЫ ПИЛООБРАЗНОГО НАПРЯЖЕНИЯ

Используя источник неизменного тока на полевом транзисторе в генераторе пилообразного напряжения, можно получить пилу, линейность и наклон которой почти не зависят от случайных изменений управляющего напряжения. Кроме того, полевые транзисторы позволяют реализовать схемы генераторов развертки с такими значениями линейности и длительности, которых трудно достигнуть при использовании биполярных транзисторов.

Генератор пилообразного напряжения, изображенный на рис. 7, состоит из источника постоянного тока на полевом транзисторе T1, конденсатора переменной ёмкости С1 и однопереходного транзистора Т2. С помощью потенциометра R2 устанавливается значение постоянного тока стока полевого транзистора Т1, соответствующее термостабильной точке ПТ. Отрицательная обратная связь, создаваемая включенными в цепь истока резисторами R1 и R2 с большим сопротивлением, обеспечивает стабильный ток стока несмотря на наличие изменений напряжения питания. Этот ток линейно заряжает конденсатор переменной емкости С1 до напряжения запуска однопереходного транзистора Т2. Время заряда является функцией ёмкости конденсатора С1 .

Рис. 7. Схема генератора пилообразного напряжения.

Изменяя ёмкость конденсатора С1, можно регулировать частоту повторения выходного сигнала генератора в диапазоне от 500 Гц до 50 кГц. Накопительный конденсатор быстро разряжается через проводящий переключатель на транзисторе Т2. Пилообразное напряжение с конденсатора С1 подается на выход через эмиттерный повторитель на транзисторе Т3. Амплитуда выходного сигнала определяется положением движка потенциометра R4 и может регулироваться в пределах от 0 до 8 В . Во всём диапазоне частот нелинейность пилообразного напряжения в данной схеме не превышает 1%.

КВАРЦЕВЫЕ ГЕНЕРАТОРЫ

Одним из самых важных параметров генераторов является стабильность частоты генерируемых колебаний. Жёсткие требования к стабильности и воспроизводимости частоты в современных радиотехнических устройствах удается удовлетворить при использовании кварцевых генераторов.

Рис. 8. Схема кварцевого генератора.

Ламповые кварцевые генераторы в большинстве практических случаев являются неприемлемыми ввиду таких недостатков, как большая потребляемая мощность, большие габариты и масса. Кроме того, сама лампа является источником тепла, что затрудняет термостатирование генератора.

Ввиду малого входного сопротивления биполярных транзисторов кварцевый резонатор в автогенераторах включают только между базой и коллектором.

Полевые транзисторы, в которых отсутствуют перечисленные выше недостатки электронных ламп и биполярных транзисторов, в настоящее время достаточно часто используются в схемах кварцевых генераторов.

А.Г. Милехин

Литература:

  1. Гозлинг В. Применение полевых транзисторов. М., «Энергия», 1970.
  2. Барсуков Ф. И. Генераторы и селективные усилители низкой частоты. М., «Энергия», 1964.
  3. Гоноровский И. С Радиотехнические цепи и сигналы. М., «Советское радио», 1971.
  4. Ван дер Гиир. Перестройка RC-генератора в декадном диапазоне с помощью полевых транзисторов. - «Электроника», № 4, 1969.
  5. Крисилов Ю. Д. Автоматическая регулировка и стабилизация усиления транзисторных схем. М., «Советское радио», 1972.
  6. Проссер Л. Стабильные генераторы на полевых транзисторах. - «Электроника», 1966, № 20.
  7. Ханус, Мартинес. Стабильный НЧ мультивибратор с двумя ПТ. - «Электроника», 1967, №1.
  8. Илэд Л. Использование полевого транзистора для получения стабильного пилообразного напряжения. - «Электроника», 1966, № 16.
  9. Экспресс-информация «ПЭА и ВТ», 1973, № 47.
  10. Кинг Л. Стабильный кварцевый генератор на полевом транзисторе. - «Электроника», 1973, №13.
  11. Игнатов А.Н. Применение полевых транзисторов типа КП103 в аппаратуре связи. - В книге: Тенденции развития активных радиокомпонентов малой мощности. Новосибирск, "Наука", 1971.

Применение генераторов типа RC с колебательными контурами из индуктивности и емкости, рассмотренных выше, усложняется по мере понижения частоты генерируемых колебаний, так как труднб обеспечить необходимое качество контура и осуществлять перестройку частоты генератора, если он работает в широком диапазоне частот: увеличиваются его габариты. В связи с этим большое распространение получили реостатно-емкостные генераторы синусоидальных колебаний (RC генераторы ), которые устойчиво работают в широком диапазоне частот (от долей герца до нескольких тысяч килогерц), просты по устройству и малогабаритны.

На рис. 170, а приведена схема RС-генератора , представляющая собой двухкаскадный реостатно-емкостный усилитель с положительной и отрицательной обратной связью. Первая обеспечивает выполнение условий самовозбуждения схемы, а вторая повышает устойчивость ее работы.

При включении схемы на сетке лампы Л 1 вследствие флуктуации, возникает переменное напряжение, которое усиливается лампами Л 1 и Л 2 . Так, если потенциал управляющей сетки лампы Л 1 стал выше и имеет положительный знак, то нетрудно убедиться, что на выходе схемы, на сопротивлении R c2 , потенциал тоже станет выше.

Параллельно сопротивлению R c2 подключена цепочка обратной связи, состоящая из двух звеньев RC. Совершенно очевидно, что потенциал точки тоже становится выше, т. е. на управляющую сетку лампы Л 1 за счет обратной связи, поступает напряжение в фазе с первоначальными флуктуационными колебаниями.

Рис. 170. Генераторы типа RC : а - двухкаскадная реостатно-емкостная схема; б - схема с фазовращающей цепочкой; в - векторная диаграмма.

Частота генерируемых колебаний, определяемая цепочкой RC, может быть определена из следующих соображений. Напряжение на выходе усилителя (на сопротивлении R c2)

U вых =U с1 K

где U с 1 - сигнал на входе лампы Л 1 ; К - коэффициент усиления усилителя (влиянием емкости C с2 , пренебрегаем). Напряжение обратной связи, возникающее на управляющей сетке лампы Л 1

где Z ав - сопротивление цепи между точками а-в; Z бв - сопротивление цепи между точками б-в.

Генерация возможна лишь при условии, что фазы векторов напряжений U с1 и U о.с совпадут, что будет иметь место, если сопротивления Z ав и Z бв создадут одинаковый сдвиг по фазе между напряжениями на этих участках и токами. При выполнении этого условия

Z аб =Z ав -Z бв =Z ав е iφ - Z бв е iφ

Учитывая, что

ctg φ аб =RωC

ctg φ ав =1/RωC

то, приравняв правые части последних равенств, получим

откуда можно определить частоту генерируемых колебаний

Коэффициент обратной связи β, который необходимо обеспечить для самовозбуждения схемы, определяем из соотношения

Следовательно, на вход усилителя необходимо подавать третью часть выходного напряжения, т. е. для обеспечения баланса амплитуд усилитель должен иметь коэффициент усиления К = 3.

Чтобы уменьшить нелинейные искажения, возникающие при такой сильной обратной связи, в схему введена автоматически регулируемая отрицательная обратная связь; цепь ее образуют термистор Т и сопротивление R к1 . С увеличением выходного напряжения ток термистора возрастает, его сопротивление, а стало быть и напряжение на нем, уменьшаются, а напряжение отрицательной обратной связи, образующееся на сопротивлении R к1 , увеличивается. Регулируемая отрицательная обратная связь повышает постоянство напряжения на управляющей сетке лампы Л 1 . В схеме имеется также нерегулируемая отрицательная обратная связь по току: на управляющую сетку лампы Л 2 поступает напряжение обратной связи с сопротивления R к2 .

Широкое практическое применение имеют также RС-генераторы с фазовращающей цепочкой. Для поворота фазы выходного напряжения (напряжения на аноде) на 180° в этих схемах используют фазовращатели, в которых вместо лампы, как это имело место в предыдущей схеме, используются цепочки RC. На рис. 170, б приведена схема такого RС-генератора с четырехзвенной фазовращающей цепочкой. Каждое звено ее поворачивает фазу на угол φ = 180/n, где n - число звеньев. В рассматриваемои схеме угол φ = 180/4 = 45°.

Процесс самовозбуждения иллюстрирует векторная диаграмма (рис. 170, в ). Переменный анодный ток Iа, появляющийся в схеме вследствие флуктуации, создает на аноде переменное напряжение U а, находящееся в противофазе с током. Это напряжение приложено к первому звену фазовращающей цепочки R 1 C 1 , ток в которой опережает напряжение U R1C1 на 45° и создает на сопротивлении R 1 напряжение U R1 , находящееся в фазе с током. Напряжение U R1 является входным по отношению к цепочке R 2 C 2 .

Таким образом, путем постепенного поворота фазы анодного напряжения на сопротивлении R 4 (на сетке лампы) образуется напряжение сигнала, находящееся в противофазе с анодным напряжением, т. е. выполняется условие баланса фаз. Кроме этого, для устойчивой генерации необходимо также, чтобы коэффициент усиления схемы К на частоте генерации был равен или больше коэффициента затухания d фазовращающей цепочки.

Частота генерируемых колебаний определяется по формуле

(296)

при коэффициенте усиления усилителя К = 18,4.

Одноламповый RС-генератор имеет малые габариты, прост по устройству, однако обладает рядом недостатков:

  • а) незначительное увеличение обратной связи или усиления приводят к резкому искажению формы генерируемых колебаний;
  • б) цепочки RC шунтируют анодную нагрузку, в связи с чем часто бывает трудно получить необходимое усиление для самовозбуждения;
  • в) затухание фазовращающей цепочки зависит от частоты, поэтому при конструировании генератора, предназначенного для работы в достаточно широком диапазоне частот, в схему приходится вводить нелинейную регулируемую отрицательную обратную связь и автоматическую регулировку усиления.

R-C генераторы синусоидальных колебаний

Сглаживающие RC фильтры

В схемах выпрямления малой мощности дроссель фильтра может быть заменён резистором R Ф. Такие типы фильтров называют RC фильтрами

Расчёт сглаживающего RC фильтра должен вестись с учётом следующих условий

Коэффициент сглаживания фильтра

Сопротивление резистора R Ф обычно задаются в пределах R Ф = (0,15…0,5)R H ; КПД резистивно-емкостного фильтра сравнительно мал и обычно составляет 0,6…0,8, причем при η ф = 0,8 R Ф = 0,25R H .

Преимущества резистивно-емкостных фильтров: малые габариты, масса и стоимость; недостаток – низкий КПД.

Простейшая схема RC -генератора синусоидальных колебаний на операционном усилителе приведена на рис. 37а.

Рис. 37. RC-генератор синусоидальных колебаний

RC генераторы используют для задания частоты резисивно - емкостную связь. Основные два вида генераторов синусоидальных колебаний это: генератор с фазосдвигающей цепью и генератор на основе моста Вина. Генератор с фазосдвигающей цепью - это обычный усилитель с фазосдвигающей цепью обратной связи. На комбинации цепочек имеют место потери мощности, поэтому транзистор должен иметь достаточно высокий коэффициент усиления.

Частота генератора рассчитывается по формуле.

R в этой формуле - значения сопротивлений R1,R2, (они одинаковые). C - это соответственно, любое из значений емкости С1 или С2 (также одинаковые)

Генератор на основе моста Вина – двухкаскадный усилитель с цепью опережения-запаздывания и делителем напряжения.

Резисторы R1 и R2 одинакового номинала(по сопротивлению), сопротивление резистора R3 примерно вполовину меньше. Емкость конденсаторов C1 и C2 равна, а конденсатора C3 - примерно в два раза больше.
Частота генерируемых колебаний определяется соотношением.

Где C - номинал конденсатора C1(C2), R номинал сопротивления - R1(R2).
При R1,R2 = 10KOm, R3=4,7KOm, C1,C2 =16нФ, C3=33нФ частота равняется, примерно - 1000гц.
Используя сдвоенный переменный резистор (в качестве R1 и R2) можно плавно изменять частоту колебаний в больших пределах.

Генератор синосуидальных колебаний имеющий несколько поддиапазонов, можно получить с помощью несложной коммутационной схемы, с помощью которой можно попеременно подключать конденсаторы различной емкости, в качестве С1, С2 и С3. Подобное устройство может быть очень полезным для радиолюбителя, в частности - для настройки различных усилительных каскадов.

Электронные генераторы синусоидальных колебаний (L,C –генератор)

LC-генераторы

Генераторы синусоидальных колебаний – это генераторы, которые генерируют напряжение синусоидальной формы.



Они классифицируются согласно их частотно-задающим компонентам. Тремя основными типами генераторов являются LC генераторы, кварцевые генераторы и RCгенераторы.

LC генераторы используют колебательный контур из конденсатора и катушки индуктивности, соединенных либо параллельно, либо последовательно, параметры которых определяют частоту колебаний.

Кварцевые генераторы, подобны LC генераторам, но обеспечивают более высокую стабильность колебаний.

RC-генераторы используются на низких частотах, в них для задания частоты колебаний используется резистивно-емкостная цепь.

Похожие публикации