Линейное программирование методы решения. Графический метод решения злп

Наиболее простым и наглядным методом решения задачи линейного программирования (ЗЛП) является графический метод. Он основан на геометрической интерпретации задачи линейного программирования и применяется при решении ЗЛП с двумя неизвестными:

Будем рассматривать решение этой задачи на плоскости. Каждое неравенство системы функциональных ограничений геометрически определяет полуплоскость с граничной прямой а п х, + + a j2 х 2 = b n i = 1, т. Условия неотрицательности определяют полуплоскости с граничными прямыми х { = 0, х 2 = 0 соответственно. Если система совместна, то полуплоскости, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек; координаты каждой из этих точек являются решением данной системы. Совокупность этих точек называют многоугольником решений. Он может быть точкой, отрезком, лучом, ограниченным и неограниченным многоугольником.

Геометрически ЗЛП представляет собой отыскание такой угловой точки многоугольника решений, координаты которой доставляют максимальное (минимальное) значение линейной целевой функции, причем допустимыми решениями являются все точки многоугольника решений.

Линейное уравнение описывает множество точек, лежащих на одной прямой. Линейное неравенство описывает некоторую область на плоскости.

Определим, какую часть плоскости описывает неравенство 2х { + Зх 2 12.

Во-первых, построим прямую 2х, + Зх 2 = 12. Она проходит через точки (6; 0) и (0; 4). Во-вторых, определим, какая полуплоскость удовлетворяет неравенству. Для этого выбираем любую точку на графике, не принадлежащую прямой, и подставляем ее координаты в неравенство. Если неравенство будет выполняться, то данная точка является допустимым решением и полуплоскость, содержащая точку, удовлетворяет неравенству. Для подстановки в неравенство удобно использовать начало координат. Подставим х { = х 2 = 0 в неравенство 2х, + Зх 2 12. Получим 2 0 + 3 0

Аналогично графически можно изобразить все ограничения задачи линейного программирования.

Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью допустимых решений (ОДР) или областью определения.

Необходимо помнить, что область допустимых решений удовлетворяет условиям неотрицательности (Xj > 0, j = 1, п). Координаты любой точки, принадлежащей области определения, являются допустимым решением задачи.

Для нахождения экстремального значения целевой функции при графическом решении ЗЛП используют вектор-градиент, координаты которого являются частными производными целевой функции:

Этот вектор показывает направление наискорейшего изменения целевой функции. Прямая c [ x l + с 2 х 2 = f(x 0), перпендикулярная вектору-градиенту, является линией уровня целевой функции (рис. 2.2.2). В любой точке линии уровня целевая функция принимает одно и то же значение. Приравняем целевую функцию постоянной величине а. Меняя значение а, получим семейство параллельных прямых, каждая из которых является линией уровня целевой функции.


Рис. 2.2.2.

Важное свойство линии уровня линейной функции состоит в том, что при параллельном смещении линии в одну сторону уровень только возрастает, а при смещении в д р у г у ю сторону - только убывает.

Графический метод решения ЗЛП состоит из четырех этапов:

  • 1. Строится область допустимых решений (ОДР) ЗЛП.
  • 2. Строится вектор-градиент целевой функции (ЦФ) с началом в точке х 0 (0; 0): V = (с, с 2).
  • 3. Линия уровня CjXj + с 2 х 2 = а (а - постоянная величина) - прямая, перпендикулярная вектору-градиенту V, - передвигается в направлении вектора-градиента в случае максимизации целевой функции f(x v х 2) до тех пор, пока не покинет пределов ОДР. При минимизации /(*, х 2) линия уровня перемещается в направлении, противоположном вектору-градиенту. Крайняя точка (или точки) ОДР при этом движении и является точкой максимума (минимума) f(x p jc 2).

Если прямая, соответствующая линии уровня, при своем движении не покидает ОДР, то минимума (максимума) функции f(x р х 2) не существует.

Если линия уровня целевой функции параллельна функциональному ограничению задачи, на котором достигается оптимальное значение ЦФ, то оптимальное значение ЦФ будет достигаться в любой точке этого ограничения, лежащей между двумя оптимальными угловыми точками, и, соответственно, любая из этих точек является оптимальным решением ЗЛП.

4. Определяются координаты точки максимума (минимума). Для этого достаточно решить систему уравнений прямых, дающих в пересечении точку максимума (минимума). Значение f(x { , х 2), найденное в полученной точке, является максимальным (минимальным) значением целевой функции.

Возможные ситуации графического решения ЗЛП представлены в табл. 2.2.1.

Таблица 2.2.1

Вид ОДР

Вид оптимального решения

Ограниченная

Единственное решение

Бесконечное множество решений

Неограниченная

ЦФ не ограничена снизу

ЦФ не ограничена сверху

Единственное решение

Бесконечное множество решений

Единственное решение

Бесконечное множество решений

Пример 2.2.1. Планирование выпуска продукции пошивочного предприятия (задача о костюмах).

Намечается выпуск двух видов костюмов - мужских и женских. На женский костюм требуется 1 м шерсти, 2 м лавсана и 1 человекодень трудозатрат; на мужской - 3,5 м шерсти, 0,5 м лавсана и 1 человекодень трудозатрат. Всего имеется 350 м шерсти, 240 м лавсана и 150 человекодней трудозатрат.

Требуется определить, сколько костюмов каждого вида необходимо сшить, чтобы обеспечить максимальную прибыль, если прибыль от реализации женского костюма составляет 10 ден. ед., а от мужского - 20 ден. ед. При этом следует иметь в виду, что необходимо сшить не менее 60 мужских костюмов.

Экономико-математическая модель задачи

Переменные : х, - число женских костюмов; х 2 - число мужских костюмов.

Целевая функция :

Ограничения :

Первое ограничение (по шерсти) имеет вид х { + 3,5х 2 х { + 3,5х 2 = 350 проходит через точки (350; 0) и (0; 100). Второе ограничение (по лавсану) имеет вид 2х { + 0,5х 2 2х х + 0,5х 2 = 240 проходит через точки (120; 0) и (0; 480). Третье ограничение (по труду) имеет вид х у +х 2 150. Прямая х { + х 2 = 150 проходит через точки (150; 0) и (0; 150). Четвертое ограничение (по количеству мужских костюмов) имеет вид х 2 > 60. Решением этого неравенства является полуплоскость, лежащая выше прямой х 2 = 60.

В результате пересечения построенных четырех полуплоскостей получаем многоугольник, который и является областью допустимых решений нашей задачи. Любая точка этого многоугольника удовлетворяет всем четырем функциональным неравенствам, а для любой точки вне этого многоугольника хотя бы одно неравенство будет нарушено.

На рис. 2.2.3 затенена область допустимых решений (ОДР). Для определения направления движения к оптимуму построим вектор- градиент V, координаты которого являются частными производными целевой функции:

Чтобы построить такой вектор, нужно соединить точку (10; 20) с началом координат. Для удобства можно строить вектор, пропорциональный вектору V. Так, на рис. 2.2.3 изображен вектор (30; 60).

Затем построим линию уровня 10xj + 20х 2 = а. Приравняем целевую функцию постоянной величине а. Меняя значение а , получим семейство параллельных прямых, каждая из которых является линией уровня целевой функции:

Далее будем передвигать линию уровня до ее выхода из ОДР. В нашем случае (при максимизации целевой функции) движение линии уровня будем осуществлять в направлении градиента. В крайней угловой точке достигается максимум целевой функции. Для нахождения координат этой точки решаем систему из двух уравнений прямых, дающих в пересечении точку максимума:

Получаем При этих значениях

Ответ. Для получения максимальной прибыли (2300) необходимо сшить 70 женских (xj 1 = 70) и 80 мужских (х 2 = 80) костюмов.

Рис. 2.2.3. Точка (70; 80) - оптимальное решение задачи Пример 2.2.2. Найти максимум и минимум f(X ):

при ограничениях

Решение. При решении данного примера на максимум возникает ситуация, когда линия уровня Зх, + 3х 2 = а параллельна первому ограничению: х х +х 2 8. Целевая функция достигает максимального значения в двух точках: А (3; 5) и В (6; 2) - и принимает на отрезке АВ одно и то же значение, равное 24:

При решении данного примера на минимум целевой функции линию уровня 3xj + 3х 2 - а следует двигать в направлении, обратном направлению вектора-градиента. Целевая функция достигает минимального значения в точке D (0,5; 0):

Графическое решение примера приведено на рис. 2.2.4.

Рис. 2.2.4.

Ответ: max /(2Q = 24; min /(X) = 1,5. Пример 2.2.3. Найти максимум /(X):

при ограничениях

Решение. Задача не имеет решения, так как ЦФ не ограничена сверху на ОДР (рис. 2.2.5).

Цех изготавливает изделия А и Б. Расход сырья, его запас и прибыль от реализации каждого изделия указаны в таблице.

Вид сырья Расход на изделие Запас А Б 48 12 600 24 21 840 15 27 1350 Прибыль 12 18

Найти план производства изделий, обеспечивающий предприятию максимальную прибыль от их реализации. Решить задачу графическим методом.

Решение задачи

Экономико-математическая модель задачи

Через и обозначим количество выпускаемой продукции вида А и Б соответственно.

Тогда ограничения на ресурсы:

Кроме того, по смыслу задачи

Целевая функция, выражающая получаемую прибыль от реализации изделий:

Получаем следующую экономико-математическую модель:

Построение чертежа

Для построения области допустимых решений строим в системе координат соответствующие данным ограничениям-неравенствам граничные прямые:

Найдем точки, через которые проходят прямые:

Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Для определения полуплоскости возьмём любую точку, например точку не принадлежащую прямой (1), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 1-го неравенства соответствует левая полуплоскость

Возьмём любую точку, например точку не принадлежащую прямой (2), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 2-го неравенства соответствует левая полуплоскость

Для определения полуплоскости возьмём любую точку, например точку не принадлежащую прямой (3), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 3-го неравенства соответствует нижняя полуплоскость

Областью допустимых решений является фигура .

Строим вектор , координаты которого пропорциональны коэффициентам целевой функции.

Перпендикулярно к построенному вектору проводим линию уровня .

Нахождение оптимального плана

Перемещаем линию уровня в направлении вектора так, чтобы она касалась области допустимых решений в крайней точке. Решением на максимум является точка D, координаты которой находим как точку пересечения прямой (2) и оси .

Таким образом, необходимо выпускать 40 ед. изделия Б. Изделие а выпускать невыгодно. При этом прибыль будет максимальной и составит 720 д.е.

Математическое моделирование в исследовании операций является, с одной стороны, очень важным и сложным, а с другой - практически не поддающимся научной формализации процессом. Заметим, что неоднократно предпринимавшиеся попытки выделить общие принципы создания математических моделей приводили либо к декларированию рекомендаций самого общего характера, трудно приложимых для решения конкретных проблем, либо, наоборот, к появлению рецептов, применимых в действительности только к узкому кругу задач. Поэтому более полезным представляется знакомство с техникой математического моделирования на конкретных примерах.

Задачи линейного программирования можно решить следующими методами:

    алгоритмом Флойда;

    алгоритм Дейкстры на графах;

    графический метод;

    метод симплекс-таблиц и др.

Алгоритм решения задач линейного программирования методом Дейкстры на графах.

В простейшей реализации для хранения чисел d[i] можно использовать массив чисел, а для хранения принадлежности элемента множеству U - массив булевых переменных.

В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (большим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.

На каждом шаге цикла необходимо найти вершину U с минимальным расстоянием и флагом равным нулю. Затем нужно установить в ней флаг в 1 и проверяем все соседние с ней вершины U. Если расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то необходимо уменьшить его. Цикл завершается, когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0. Последний случай возможен тогда и только тогда, когда граф G не связан.

Способом решения задач линейного программирования графическим методом.

Графический метод решения задачи линейного программирования основан на геометрической интерпретации задачилинейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задачтрёхмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трёх изобразить графически вообще невозможно.

Пусть задача линейного программирования задана в двумерном пространстве, то есть ограничения содержат две переменные.

Минимальное значение функции определено формулой (1).

(1)

Ограничения представлены формулами (2) и (3).

(2)

(3)

Пусть система (2) при условии (3) совместна. Каждое из неравенств из систем (2) и (3) определяет полуплоскость с граничными прямыми представлено формулой(4):

Линейная функция (1) при фиксированных значениях Z является уравнением прямой линии:

Необходимо построить многоугольник решений системыограничений (2) и графиклинейной функции(1) при Z=0. Тогда поставленной задаче линейного программирования можно дать следующую интерпретацию:

Найти точку многоугольника решений, в которой прямая
опорная и функция Z при этом достигает минимума.

Значения
уменьшаются в направлениивектора
, поэтому прямую Z=0 необходимо передвигать параллельно самой себе в направлении вектора N.

Если многоугольникрешений ограничен, то прямая дважды становится опорной по отношению к многоугольнику решений (в точкахB и E), причём минимальное значение принимает в точке E. Координаты точки
необходимо найти, решая систему уравнений прямых DE и EF.

Если же многоугольник решений представляет собой неограниченную многоугольную область, то возможны два случая.

Случай 1. Прямая
, передвигаясь в направлении вектораN или противоположно ему, постоянно пересекает многоугольник решений и ни в какой точке не является опорной к нему. В этом случае линейная функцияне ограничена на многоугольнике решений как сверху, так и снизу.

Случай 2. Прямая, передвигаясь, всё же становится опорной относительно многоугольника решений. Тогда в зависимости от вида области линейная функция может быть ограниченной сверху и неограниченной снизу, ограниченной снизу и неограниченной сверху, либо ограниченной как снизу, так и сверху.

Для решения данной задачи был выбран наиболее известный и широко применяемый на практике для решения задач линейного программирования является симплекс-метод. Несмотря на то, что симплекс-метод является достаточно эффективным алгоритмом, показавшим хорошие результаты при решении прикладных задач линейного программирования, он является алгоритмом сэкспоненциальной сложностью.

Симплексный метод задач линейного программирования основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает или убывает.

Перед составлением симплекс-таблицы задача должна быть преобразована, система ограничений приведена к допустимому базисному виду, c помощью которого из целевой функции должны быть исключены базисные переменные как показано на рисунке 1.

Рисунок 1 – Начальное преобразование системы ограничений

Здесь для определенности записи считается, что в качестве базисных переменных можно взять переменные X1, X2, ..., Xr и что при этом b1, b2,..., br ≥ 0 (соответствующее базисное решение является опорным).

Для составления симплекс-таблицы во всех равенствах в условии задачи члены, содержащие переменные, переносятся в левую часть, свободные оставляются справа, т.е. задача записывается в виде системы равенствкак показано на рисунке 2.

Рисунок 2 – Преобразование системы неравенств

Алгоритм перехода к следующей таблице такой:

      просматривается последняя строка (индексная) таблицы и среди коэффициентов этой строки (исключая столбец свободных членов) выбирается наименьшее отрицательное число при отыскании max, либо наибольшее положительное при задачи на min. Если такового нет, то исходное базисное решение является оптимальным и данная таблица является последней;

      просматривается столбец таблицы, отвечающий выбранному отрицательному (положительному) коэффициенту в последней строке- ключевой столбец, и в этом столбце выбираются положительные коэффициенты. Если таковых нет, то целевая функция неограниченна на области допустимых значений переменных и задача решений не имеет;

      среди выбранных коэффициентов столбца выбирается тот, для которого абсолютная величина отношения соответствующего свободного члена (находящегося в столбце свободных членов) к этому элементу минимальна. Этот коэффициент называется разрешающим, а строка в которой он находится ключевой;

      в дальнейшем базисная переменная, отвечающая строке разрешающего элемента, должна быть переведена в разряд свободных, а свободная переменная, отвечающая столбцу разрешающего элемента, вводится в число базисных. Строится новая таблица, содержащая новые названия базисных переменных:

      разделим каждый элемент ключевой строки (исключая столбец свободных членов) на разрешающий элемент и полученные значения запишем в строку с измененной базисной переменной новой симплекс таблицы.

      строка разрешающего элемента делится на этот элемент и полученная строка записывается в новую таблицу на то же место.

      в новой таблице все элементы ключевого столбца = 0, кроме разрезающего, он всегда равен 1.

      столбец, у которого в ключевой строке имеется 0,в новой таблице будет таким же.

      строка, у которой в ключевом столбце имеется 0, в новой таблице будет такой же.

      в остальные клетки новой таблицы записывается результат преобразования элементов старой таблицы, как показано на рисунке 3.

Рисунок 3 – Составление нового элемента в симплекс-таблице

В результате получают новую симплекс-таблицу, отвечающую новому базисному решению.

Теперь следует просмотреть строку целевой функции (индексную), если в ней нет отрицательных значений (в задачи на нахождение максимального значения), либо положительных (в задачи на нахождение минимального значения) кроме стоящего на месте (свободного столбца), то значит, что оптимальное решение получено. В противном случае, переходим к новой симплекс таблице по выше описанному алгоритму.

Для решения задачи данной курсовой работы было выбрано направление задачи по оптимальному распределению средств на предприятии. Оптимальным планом или оптимальным решением задачи линейного программирования является план, при котором значение целевой будет возрастать (убывать).

После анализа собранной информации, была составлена задача линейного программирования по цеху №8 в ОАО «НефАЗ».На покрасочном конвейере, на котором окрашиваются детали. Необходимо покрасить оптимальное количество деталей за одну рабочую смену, чтобы прибыль была максимальной.

Для дальнейшего решения задачи необходимо составить постановку задачи и математическую модель задачи.

Если вам понадобится решить задачу линейного программирования с помощью симплекс-таблиц, то наш онлайн сервис вам окажет большую помощь. Симплекс-метод подразумевает последовательный перебор всех вершин области допустимых значений с целью нахождения той вершины, где функция принимает экстремальное значение. На первом этапе находится какое-нибудь решение, которое улучшается на каждом последующем шаге. Такое решение называется базисным. Приведем последовательность действий при решении задачи линейного программирования симплекс-методом:

Первый шаг. В составленной таблице перво-наперво необходимо просмотреть столбец со свободными членами. Если в нем имеются отрицательные элементы, то необходимо осуществить переход ко второму шагу, есле же нет, то к пятому.

Второй шаг. На втором шаге необходимо определиться, какую переменную изключить из базиса, а какую включить, для того, что бы произвести перерасчет симплекс-таблицы. Для этого просматриваем столбец со свободными членами и находим в нем отрицательный элемент. Строка с отрицательным элементом будет называться ведущей. В ней находим максимальный по модулю отрицательный элемент, соответсвующий ему столбец - ведомый. Если же среди свободных членов есть отрицательные значения, а в соответсвующей строке нет, то такая таблица не будет иметь решений. Переменая в ведущей строке, находящаяся в столбце свободных членов исключается из базиса, а переменная соответсвующая ведущему столцу включается в базис.

Таблица 1.

базисные переменные Свободные члены в ограничениях Небазисные переменные
x 1 x 2 ... x l ... x n
x n+1 b 1 a 11 a 12 ... a 1l ... a 1n
x n+2 b 2 a 21 a 22 ... a 2l ... a 2n
. . . . . . . .
. . . . . . . .
. . . . . . . .
x n+r b2 a r1 a r2 ... a rl ... a rn
. . . . . . . .
. . . . . . . .
. . . . . . . .
x n+m b m a m1 a m2 ... a ml ... a mn
F(x) max F 0 -c 1 -c 2 ... -c 1 ... -c n

Третий шаг. На третьем шаге пересчитываем всю симплекс-таблицу по специальным формулам, эти формулы можно увидеть, воспользовавшись .

Четвертый шаг. Если после перерасчета в столбце свободных членов остались отрицаетельные элементы, то переходим к первому шагу, если таких нет, то к пятому.

Пятый шаг. Если Вы дошли до пятого шага, значит нашли решение, которое допустимо. Однако, это не значит, что оно оптимально. Оптимальным оно будет только в том случае, если положительны все элементы в F-строке. Если же это не так, то необходимо улучшить решение, для чего находим для следующего перерасчета ведущие строку и столбец по следующему алгоритму. Первоначально, находим минимальное отрицательное число в строке F, исключая значение функции. Столбец с этим числом и будем ведущим. Для того, что бы найти ведущую строку, находим отношение соответсвующего свободного члена и элемента из ведущего столбца, при условии, что они положительны. Минимальное отношение позволит определить ведущую строку. Вновь пересчитываем таблицу по формулам, т.е. переходим к шагу 3.

Рассмотрим сначала простейший случай, когда в ЗЛП включены ровно две переменные:

Каждое из неравенств (a)-(b) системы ограничений задачи (3.8) геометрически определяет полуплоскость соответственно с граничными прямыми , Х 1 =0 и Х 2 =0. Каждая из граничных прямых делит плоскость х 1 Ох 2 на две полуплоскости. Все решения исходного неравенства лежат в одной из образованных полуплоскостей (все точки полуплоскости) и, следовательно, при подстановке координат любой ее точки в соответствующее неравенство обращает его в верное тождество. С учетом этого и определяется та полуплоскость, в которой лежат решения неравенства, т.е. путем выбора любой точки из какой-либо полуплоскости и подстановки ее координат в соответствующее неравенство. Если неравенство выполняется для данной точки, то оно выполняется и для любой другой точки из этой же полуплоскости. В противном случае решения неравенства лежат в другой полуплоскости.

В том случае, если система неравенств (a)-(b) совместна, то область её решений есть множество точек, принадлежащих всем указанным полуплоскостям. Так как множество точек пересечения данных полуплоскостей выпуклое, то область допустимых решений задачи (3.8) является выпуклое множество, которое называется многоугольником решений (введённый ранее термин “многогранник решений” обычно употребляется, если n 3). Стороны этого многоугольника лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки точных равенств.

Таким образом, исходная ЗЛП состоит в нахождении такой точки многоугольника решений, в которой целевая функция F принимает максимальное (минимальное) значение.

Эта точка существует тогда, когда многоугольник решений не пуст и на нём целевая функция ограничена сверху. При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины строят линию уровня L: c 1 x 1 +c 2 x 2 =h (где h – некоторая постоянная), перпендикулярную вектору-градиенту и проходящую через многоугольник решений, и передвигают её параллельно вдоль вектора-градиента до тех пор, пока она не пройдёт через последнюю её общую точку пересечения с многоугольником решений (при построении вектора-градиента откладывают точку (с 1 ; с 2) в плоскости х 1 Ох 2 и проводят к ней из начала координат направленный отрезок). Координаты указанной точки и определяют оптимальный план данной задачи.

Суммируя все выше изложенное, приведем алгоритм графического метода решения ЗЛП.

Алгоритм графического метода решения ЗЛП

1. Построить многоугольник решений, задаваемый системой ограничений исходной ЗЛП.


2. Если построенный многоугольник решений – пустое множество, то исходная ЗЛП решений не имеет. В противном случае построить вектор-градиент и провести произвольную линию уровня L, перемещая которую при решении задачи на максимум в направлении вектора (или в обратном направлении для задачи на минимум) определить крайнюю точку многоугольника решений, где и достигается максимум (минимум) целевой функции задачи.

3. Вычислить координаты найденной оптимальной точки , решив систему уравнений двух граничных прямых, пересекающихся в ней.

4. Подстановкой найденного оптимального решения в целевую функцию задачи вычислить оптимальное ее значение, т.е.: .

При графическом построении множества допустимых решений ЗЛП (многоугольника решений) возможны следующие ситуации.

Похожие публикации