Формы сигналов. Сигнал: виды сигналов, особенности, сферы применения и отзывы

Практически с самого момента зарождения человеческие племена столкнулось с необходимостью не только накапливать информацию, но и обмениваться ею друг с другом. Однако если с ближними сделать это было не так уже и сложно (язык и письменность), то с теми, кто находился на дальних расстояниях, данный процесс вызывал некоторые проблемы.

Со временем они были решены с помощью изобретения сигнала. поначалу были довольно примитивными (дымовые, звуковые и т. п.), но постепенно человечество открывало новые законы природы, что способствовало изобретению новых способов для передачи информации. Давайте узнаем, какие виды сигналов бывают, а также рассмотрим, какими из них чаще всего пользуются в современном обществе.

Что называется сигналом

Под этим словом подразумевается закодированная одной системой информация, которая передается по специальному каналу и может быть декодирована другой системой.

Многие ученые полагают, что способность биологических организмов или даже отдельных клеток взаимодействовать между собою (сигнализируя о наличии питательных веществ или опасности) стала основной движущей силой эволюции.

В качестве сигнала может выступать каждый физический процесс, параметры которого адаптируются под тип передаваемых данных. К примеру, в системе телефонной связи передатчик преобразует слова говорящего абонента в электрический сигнал напряжения, который по проводам передается к принимающему аппарату, возле коего находится слушающий человек.

Сигнал и сообщение

Эти два понятия весьма близки по значению - они содержат в себе определенные данные, передающиеся от отправителя к получателю. Однако между ними есть ощутимое отличие.

Для реализации поставленной цели сообщение обязательно должно быть принято адресатом. То есть его жизненный цикл состоит из трех этапов: кодирование информации - передача - декодирование сообщения.

В случае с сигналом его принятие не является обязательным условием его существования. То есть зашифрованную в нем информацию возможно декодировать, но будет ли это сделано кем-то - неизвестно.

Классификация по разным критериям сигналов: основные виды

В природе существует немало разновидностей сигналов, обладающих разными особенностями. В связи с этим для их классификации используют различные критерии этих явлений. Таким образом, выделяют три категории:

  • По способу подачи (регулярный/нерегулярный).
  • По типу физической природы.
  • По типу функции, описывающей параметры.

Сигналы по типу физической природы

В зависимости от способа образования, виды сигналов бывают следующими.

  • Электрические (носитель информации - изменяющиеся во времени ток или напряжение в электрической цепи).
  • Магнитные.
  • Электромагнитные.
  • Тепловые.
  • Сигналы ионизирующих излучений.
  • Оптические/световые.
  • Акустические (звуковые).

Виды сигналов последние два также являются простейшими примерами коммуникационных технических операций, цель которых - оповещение об особенностях сложившейся ситуации.

Чаще всего их используют для предупреждения об опасности или неисправностях системы.

Нередко звуковые и оптические разновидности используются в качестве координирующих для налаженной работы автоматизированного оборудования. Так некоторые виды сигналов управления (команды) являются стимулирующими для системы, чтобы начать действовать.

К примеру, в противопожарных сигнализациях при обнаружении следов дыма датчиками они издают пронзительный звук. Тот, в свою очередь, воспринимается системой как управляющий сигнал для тушения очага возгорания.

Еще одним примером того, как сигнал (виды сигналов по типу физической природы перечислены выше) активизирует работу системы в случае опасности, является терморегуляция человеческого организма. Так, если вследствие различных факторов температура тела повышается, клетки «информируют» мозг об этом, и он включает «систему охлаждения организма», более известную всем как потоотделение.

По типу функции

По данному параметру выделяется разные категории.

  • Аналоговые (непрерывные).
  • Квантовые.
  • Дискретные (импульсные).
  • Цифровой сигнал.

Все эти виды сигналов - электрические. Обусловлено это тем, что их не только легче обрабатывать, но и они без труда передаются на длинные дистанции.

Что такое аналоговый сигнал и его виды

Такое название носят сигналы естественного происхождения, изменяющиеся непрерывно во времени (континуальные) и способные принимать разные значения на некотором интервале.

Благодаря своим свойствам, они прекрасно подходят для передачи данных в телефонной связи, радиовещании, а также телевидении.

Фактически, все остальные виды сигналов (цифровые, квантовые и дискретные) по своей природе - это преобразованные аналоговые.

В зависимости от непрерывных пространств и соответствующих физических величин, выделяются разные виды аналоговых сигналов.

  • Прямая.
  • Отрезок.
  • Окружность.
  • Пространства, характеризующиеся многомерностью.

Квантованный сигнал

Как уже было сказано в прошлом пункте, это все тот же аналоговый вид, однако его отличие состоит в том, что он подвергся квантованию. При этом вся область значений его поддалась разбивке на уровни. Их количество представляется в числах заданной разрядности.

Обычно данный процесс на практике используется при сжатии звуковых или оптических сигналов. Чем больше уровней квантования, тем более точной становится трансформация аналогового вида в квантовый.

Рассматриваемая разновидность также относится к тем, которые возникли искусственным путем.

Во многих классификациях видов сигналов сигнал этот не выделяется. Однако он существует.

Дискретный вид

Этот сигнал также относится к искусственным и имеет конечное число уровней (значений). Как правило, их два или три.

На практике различие дискретного и аналогового способов передачи сигналов можно проиллюстрировать, сравнив запись звука на виниловой пластинке и компакт-диске. На первой информация подана в виде непрерывной звуковой дорожки. А вот на втором - в виде выжженных лазером точек с разной отражающей способностью.

Этот вид передачи данных возникает путем преобразования непрерывного аналогового сигнала в набор дискретных значений в форме двоичных кодов.

Упомянутый процесс именуется дискретизацией. В зависимости от количества символов в кодовых комбинациях (равномерное/неравномерное) его делят на два вида.

Цифровые сигналы

Сегодня этот способ передачи информации настойчиво вытесняет аналоговый. Как и два предыдущих, он также является искусственным. На практике он представлен в виде последовательности цифровых значений.

В отличие от аналогового, рассматриваемый намного быстрее и качественнее передает данные, параллельно очищая их от шумовых помех. Одновременно в этом заключается и слабость цифрового сигнала (виды сигналов остальные - в предыдущих трех пунктах). Дело в том, что фильтрованная таким способом информация теряет «зашумленные» частицы с данными.

На практике это означает, что из передаваемого изображения исчезают целые куски. А если речь идет о звуке - слова или даже целые предложения.

Фактически, любой аналоговый сигнал может быть модулирован в цифровой. Для этого он подвергается одновременно двум процессам: дискретизации и квантованию. Являясь отдельным способом передачи информации, цифровой сигнал не делится на виды.

Его популярность способствует тому, что в последние годы телевизоры нового поколения создаются специально для цифрового, а не аналогового способа передачи изображения и звука. Однако их можно подключать к обычным телевизионным кабелям с помощью адаптеров.

Модуляция сигналов

Все вышеперечисленные способы передачи данных связаны с таким явлением, как модуляция (для цифровых сигналов - манипуляция). Зачем она нужна?

Как известно, электромагнитные волны (с помощью которых переносятся разные виды сигналов) склонны к затуханию, а это существенно уменьшает дальность их передачи. Чтобы этого не произошло, низкочастотные колебания переносятся в область длинных высокочастотных волн. Это явление и называется модуляцией (манипуляцией).

Помимо увеличения расстояния передачи данных, благодаря ей повышается помехоустойчивость сигналов. А также появляется возможность одновременно организовывать сразу несколько независимых каналов передачи информации.

Сам процесс выглядит следующим образом. В прибор, именуемый модулятором, поступают одновременно два сигнала: низкочастотный (несет определенную информацию) и высокочастотный (безинформационный, зато способен передаваться на длинные дистанции). В этом устройстве они преобразуются в один, который одновременно совмещает в себе достоинства их обоих.

Виды выходных сигналов зависят от измененного параметра входного несущего высокочастотного колебания.

Если оно гармоническое - такой процесс модуляции именуется аналоговым.

Если периодическое - импульсным.

Если несущим сигналом является просто постоянный ток - такая разновидность называется шумоподобной.

Первых два вида модуляции сигналов, в свою очередь, делятся на подвиды.

Аналоговая модуляция бывает такой.

  • Амплитудная (АМ) - изменение амплитуды несущего сигнала.
  • Фазовая (ФМ) - меняется фаза.
  • Частотная - влиянию подвергается только частота.

Виды модуляции сигналов импульсных (дискретных).

  • Амплитудно-импульсная (АИМ).
  • Частотно-импульсная (ЧИМ).
  • Широтно-испульсная (ШИМ).
  • Фазо-импульсная (ФИМ).

Рассмотрев, какие существуют способы передачи данных, можно сделать вывод, что, независимо от их вида, все они играют важную роль в жизни человека, помогая ему всесторонне развиваться и защищая от возможных опасностей.

Что касается аналогового и цифрового сигналов (с помощью которых передается информация в современном мире) то, вероятнее всего, в ближайшие двадцать лет в развитых странах первый будет практически полностью вытеснен вторым.

Сигналы – носители информации в средствах автоматизации могут различаться как по физической природе и параметрам, так и по форме представления информации. В рамках ГСП (государственная система приборов) применяются в серийном производстве средств автоматизации следующие типы сигналов:

Электрический сигнал (напряжение, сила или частота электрического тока);

Пневматический сигнал (давление сжатого воздуха);

Гидравлический сигнал (давление или перепад давлений жидкости).

Соответственно в рамках ГСП формируются электрическая, пневматическая и гидравлическая ветви средств автоматизации

По форме представления информации сигнал может быть аналоговым, импульсным и кодовым.

Аналоговый сигнал характеризуется текущими изменениями какого–либо физического параметра–носителя (например, мгновенными значениями электрического напряжения или тока). Такой сигнал существует практически в каждый данный момент времени и может принимать любые значения в пределах заданного диапазона изменений параметра.

Импульсный сигнал характерен представлением информации только в дискретные моменты времени, т.е. наличием квантования по времени. При этом информация представляется в виде последовательности импульсов одинаковой продолжительности, но различной амплитуды (амплитудно-импульсная модуляция сигнала) или одинаковой амплитуды, но разной продолжительности (широтно-импульсная модуляция сигнала).

Кодовый сигнал представляет собой сложную последовательность импульсов, используемую для передачи цифровой информации. При этом каждая цифра может быть представлена в виде сложной последовательности импульсов, т.е. кода, а передаваемый сигнал является дискретным (квантуется) и по времени, и по уровню.

Оптический сигнал – световая волна, несущая определенную информацию. Особенностью световой волны по сравнению с радиоволной является то, что вследствие малой длины волны в ней может быть практически осуществлена передача, прием и обработка сигналов, модулированных не только по времени, но и по пространственным координатам. Это позволяет значительно увеличить объем вносимой в оптический сигнал информации. Оптический сигнал – функция четырех переменных (x,y,z,t) – 3-х координат и времени. Электромагнитная волна – изменение во времени и в каждой точке пространства электрического и магнитного полей, которые связаны между собой по закону индукции. Электромагнитная волна характеризуется взаимно перпендикулярными векторами напряженностей электрического E и магнитного H полей, которые изменяются во времени по одному и тому же гармоническому закону.

Аналоговая величина – величина, значения которой в заданном интервале изменяются непрерывно. Её конкретное значение зависит только от точности прибора, производящего измерения. Это, например, температура.

Дискретная величина – величина, значения которой изменяются скачкообразно. Например, число студентов в аудитории. Измерительный сигнал – сигнал, содержащий количественную информацию об измеряемой физической величине. Например, напряжение на выходе термоэлектрического преобразователя, измеряющего температуру.

Сигнал данных – форма представления сообщения данных с помощью физической величины, изменения одного или нескольких параметров которой, отображает его изменение.

В микропроцессорной технике сигналами являются электрические величины (ток, напряжение). Представляющий параметр сигнала данных – параметр сигнала данных, изменение которого отображает изменение сообщения данных (амплитуда, частота, фаза, длительность импульса, длительность паузы).

– сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений, т.е. аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией x a (t), причём сама функция и аргумент t могут принимать любые значения на некоторых интервалах

Аналоговый сигнал f (t) называется периодическим, если существует действительное число T, такое, что f (t + T) = f (t) для любых t, при этом T называется периодом сигнала.

Дискретный сигнал данных – отличается от аналоговых тем, что его значения известны лишь в дискретные моменты времени. Дискретные сигналы описываются решётчатыми функциями – последовательностями – x д (nT), где T = const – интервал (период) дискретизации, n = 0, 1, 2, … .

Сама функция x д (nT) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчётами функции. Другим обозначением решётчатой функции x(nT) является x(n) или xn. Последовательность x(n) может быть конечной или бесконечной, в зависимости от интервала определения функции.

Квантованный сигнал данных – отличается от аналоговых или дискретных разбиением диапазона значений непрерывной или дискретной величины на конечное число интервалов. Простейшим видом квантования является деление целочисленного значения на натуральное число, называемое коэффициентом квантования.

Цифровой сигнал данных – сигнал, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений. Цифровые сигналы описываются квантованными решётчатыми функциями x ц (nT). При получении цифрового сигнала из аналогового происходят дискретизация и квантование.

Двоичный цифровой сигнал – сигнал данных, в котором используется способ представления информации о величине параметра в виде многоразрядной комбинации двух величин – нуля и единицы – и называемый обычно двоичным кодом.

Модуляция – процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).

В наше время двоичные цифровые сигналы в связи с простотой кодирования и обработки используются в цифровых электронных устройствах. Для передачи цифрового сигнала по каналам связи (например, электрическим или радиоканалам) используются различные виды модуляции.

Рассмотрим примеры представляющих параметров сигналов данных на примере различных видов модуляции (см. рис. 1). Кроме рассмотренных видов модуляции, также существуют фазовая (ФМ), время-импульсная (ВИМ), и другие модуляции.

Рис. 1. Различные виды модуляции сигналов – различные представляющие параметры сигналов данных

Для понимания сущности цифрового сигнала рассмотрим следующую классификацию. В цифровой технике выделяют сигналы (рис. 2):

    произвольные по величине и непрерывные во времени (аналоговые);

    произвольные по величине и дискретные по времени (дискретные);

    квантованные по величине и непрерывные по времени (квантованные);

    квантованные по величине и дискретные по времени (цифровые).

Рис. 2. Аналоговый, дискретный, квантованный и цифровой сигналы

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый , несёт информацию об изменении температуры, сигнал с микрофона – о быстрых изменениях давления в звуковой волне и т.п.

В области цифровой и импульсной техники терминология не является установившейся. Так, дискретный сигнал – это сигнал, значения представляющего параметра которого известны только в определённые моменты времени, а также это сигнал, в отличие от аналогового, представляющий параметр которого может принимать только фиксированные значения (обычно два: логический «ноль» или логическую «единицу»).

Во втором случае было бы правильно называть сигнал квантованным, но промышленные модули называются «модулями ввода дискретных сигналов». Кроме использования для передачи информации различных физических величин, сигналы различаются также представляющими параметрами.

Цель рассказа показать в чем суть понятия "сигнал", какие распространённые сигналы существуют и какие у них общие характеристики.

Что такое сигнал? На этот вопрос даже маленький ребёнок скажет, что это "такая штука, с помощью которой можно что-нибудь сообщить". Например, с помощью зеркала и солнца можно передавать сигналы на расстояние прямой видимости. На кораблях, сигналы когда-то передавали с помощью флажков-семафоров. Занимались этим специально обученые сигнальщики. Таким образом с помощью таких флажков передавалась информация. Вот как можно передать слово "сигнал":

В природе существует огромное множество сигналов. Да по сути что угодно может быть сигналом: оставленная на столе записка, какой-нибудь звук -- могут служить сигналом к началу определённого действия.

Ладно, с такими сигналами всё понятно поэтому перейду к электрическим сигналам, которых в природе не меньше чем любых других. Но их хотя бы можно как-то условно разбить на группы: треугольный, синусоидальный, прямоугольный, пилообразный, одиночный импульс и т.д. Все эти сигналы названы так за то, как они выглядят, если их изобразить их на графике.

Сигналы могут быть использованы как метроном для отсчета тактов (в качестве тактирующего сигнала), для отсчета времени, в качестве управляющих импульсов, для управления двигателями или для тестирования оборудования и передачи информации.

Характеристики эл. сигналов

В некотором смысле электрический сигнал -- это график, отражающий изменение напряжения или тока с течением времени. Что по-русски означает: если взять карандаш и по оси Х отметить время, а по Y напряжение или ток, и отметить точками соответствующие значения напряжения в конкретные моменты времени, то итоговое изображение будет показывать форму сигнала:

Электрических сигналов очень много, но их можно разбить на две большие группы:

  • Однонаправленные
  • Двунаправленные

Т.е. в однонаправленных ток течет в одну сторону (либо не течет вообще), а в двунаправленных ток является переменным и протекает то "туда", то "сюда".

Все сигналы, независимо от типа, обладают следующими характеристиками:

  • Период -- промежуток времени, через который сигнал начинает повторять себя. Обозначается чаще всего T
  • Частота -- обозначает сколько раз сигнал повториться за 1 секунду. Измеряется в герцах. К примеру 1Гц = 1 повторение в секунду. Частота является обратным значением периода ( ƒ = 1/T )
  • Амплитуда -- измеряется в вольтах или амперах (в зависимости от того какой сигнал: ток или напряжение). Амплитуда обозначает "силу" сигнала. Как сильно отклоняется график сигнала от оси Х.

Виды сигналов

Синусоида


Думаю, что представлять функцию, чей график на картинке выше нет смысла - это хорошо тебе известная sin(x). Её период равен 360 o или 2pi радиан (2pi радиан =360 o).

А если разделить поделить 1 сек на период T, то ты узнаешь сколько периодов укалдывается в 1 сек или, другими словами, как часто период повторяется. То есть ты определишь частоту сигнала! Кстати, она указывается в герцах. 1 Гц = 1 сек / 1 повтор в сек

Частота и период обратны друг другу. Чем длинней период, тем меньше частота и наоборот. Связь между частотой и периодом выражается простыми соотношениями:


Сигналы, которые по форме напоминают прямоугольники, так и называют "прямоугольные сигналы". Их условно можно разделить на просто прямоугольне сигналы и меандры. Меандр - это прямоугольный сигнал, у которого длительность импульса и паузы равны. А если сложить длительность паузы и импульса, то получим период меандра.

Обычный прямоугольный сигнал отличается от меандра тем, что имеет разную длительность импульса и паузы (отсутствие импульса). Смотри картинку ниже -- она скажет лучше тысячи слов.


Кстати, для прямоугольных сигналов существует еще два термина, которые следует знать. Они обратны друг другу (как период и частота). Это скажность и коээффициент заполнения. Скажность (S)равняется отношению периода к длительности импульса и наоборот для коэфф. заполнения.

Таким образом меандр - это прямоугольный сигнал со скважностью равной 2. Так как у него период в два раза больше длительности импульса.

S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса.

Кстати, на графиках выше показаны идеальные прямоугольные сигналы. В жизни они выглядят слегка иначе, так как ни в одном устройстве сигнал не может измениться абсолютно мгновенно от 0 до какого-то значения и обратно спуститься до нуля.

Если подняться на гору, а затем сразу спуститься и записать изменение высоты нашего положения на графике, то получим треугольный сигнал. Груое сравнение, но правдивое. В треугольный сигналах напряжение (ток) сначала возрастает, а затем тут же начинает уменьшаться. И для классического треугольного сигнала время возрастания равно времени убывания (и равно половине периода).

Если же у такого сигнала время возрастания меньше или больше времени убывания, то такие сигналы уже называют пилообразными. И о них ниже.


Пилообразный сигнал

Как я уже писал выше, несимметричный треугольный сигнал называется пилообразным. Все эти названи условны и нужны просто для удобства.

1. Основные понятия и определения. Определение радиоэлектроники. Определение радиотехники. Понятие сигнала. Классификационный анализ сигналов. Классификационный анализ радиотехнических цепей. Классификационный анализ радиоэлектронных систем.

Современная радиоэлектроника – это обобщенное название ряда областей науки и техники, связанных с передачей и преобразованием информации на основе использования и преобразования электромагнитных колебанийи волн радиочастотного диапазона; основными из этих областей являются:

радиотехника, радиофизика и электроника.

Основная задача радиотехники состоит в передаче информации на расстояние с помощью электромагнитных колебаний. В более широком смысле современная радиотехника – область науки и техники, связанная с генерацией, усилением, преобразованием, обработкой, хранением, передачей и приемом электромагнитных колебаний радиочастотного диапазона, используемых для передачи информации на расстояние. Как следует из этого, радиотехника и радиоэлектроника тесно связаны и часто эти термины заменяют друг друга.

Науку, занимающуюся изучением физических основ радиотехники, называют радиофизикой.

1. Понятие сигнала.

Сигналом (от лат. signum - знак) называется физический процесс или явление, несущее сообщение о каком-либо событии, состоянии объекта, либо передающее команды управления, оповещения и т.д. Таким образом, сигнал является материальным носителем сообщения. Таким носителем может служить любой физический процесс (свет, электрическое поле, звуковые колебания и т.п.). В радиоэлектронике изучаются и используются в основном электрические сигналы. Сигналы как физические процессы наблюдаются с помощью различных приборов и устройств (осциллографом, вольтметров, приемников). Любая модель отражает ограниченное число наиболее существенных признаков реального физического сигнала. Несущественные признаки сигнала игнорируются для упрощения математического описания сигналов. Общим требованием к математической модели является максимальное приближение к реальному процессу при минимальной сложности модели. Функции, описывающие сигналы могут принимать вещественные и комплексные значения, поэтому часто говорят о вещественных и комплексных моделях сигналов.

Классификация сигналов. По возм-ти предсказания мгн. значений сигнала в любой момент времени разл-ют:

Детерминированные сигналы, т.е. такие сигналы, для которых мгновенные значения для любого момента времени известны и предсказуемы с вероятностью равной единице;

Случайные сигналы, т.е. такие сигналы, значение которых в любой момент времени невозможно предсказать с вероятностью равной единице.

Все сигналы, несущие информацию являются случайными, поскольку полностью детерминированный сигнал (известный) информации не содержит.

Простейшими примерами детерминированного и случайного сигналов являются напряжения сети и напряжения шума соответственно (см. рис.2.1).

В свою очередь случайные и детерминированные сигналы могут подразделяться на непрерывные или аналоговые сигналы и дискретные сигналы, имеющие несколько разновидностей. Если сигнал можно измерять (наблюдать) в любой момент времени, то его называют аналоговым. Такой сигнал существует в любой момент времени. Дискретные сигналы могут наблюдаться и измеряться в дискретные (отдельные) ограниченные по длительности к моменту появления отрезки времени. К дискретным сигналам относятся импульсные сигналы.

На рисунке показаны два вида импульсов. Видеоимпульс и радиоимпульс. При формировании радиоимпульсов видеоимпульс используется как управляющий (модулирующий) сигнал и в этом случае между ними существует аналитическая связь:

При этом называется огибающей радиоимпульса, а функция- его заполнением.

Импульсы принято характеризовать амплитудой A, длительностью , длительностью фронтаи срезаи при необходимости частотойили периодомповторения.

Импульсные сигналы могут быть самых различных видов. В частности различают импульсные сигналы называемые дискретными (см. рис.2.3).

Эта разновидность сигналов может быть представлена математической моделью в виде счетного множества значений функции - где i = 1, 2, 3, ...., k, отсчитываемых в дискретные моменты времени. Шаг дискретизации сигнала по времени и по амплитуде обычно величина постоянная для данного типа сигнала, т.е. минимальное приращение сигнала

Каждое из значений конечного множества S можно представить в двоичной системе исчисления в виде числа: - 10101;- 11001;- 10111. Такие сигналы называют цифровыми.

Классификация радиосистем и решаемых ими задач

По выполняемым функциям информационные радиосистемы могут быть разделены на следующие классы:

    передачи информации (радиосвязь, радиовещание, телевидение);

    извлечения информации (радиолокация, радионавигация, радиоастрономия, радиоизмерения и т.д.);

    разрушения информации (радиопротиводействие);

    управления различными процессами и объектами (беспилотные летательные аппараты и др.);

    комбинированные.

В системе передачи информации имеется источник информации и ее получатель. В радиосистеме извлечения информации информация как таковая не передается, а извлекается или из собственных сигналов, излученных в направлении на исследуемый объект и отраженных от него, или из сигналов других радиосистем, или из собственного радиоизлучения различных объектов.

Радиосистемы разрушения информации служат для создания помех нормальной работе конкурирующей радиосистемы путем излучения мешающего сигнала, или приема, умышленного искажения и переизлучения сигнала.

В радиосистемах управления решается задача выполнения объектом некоторой команды, посылаемой с пульта управления. Командные сигналы являются информацией для следящего устройства, выполняющего команду.

Основными задачами, решаемыми радиосистемой при приеме информации, являются:

    Обнаружение сигнала на фоне помехи.

    Различение сигналов на фоне помехи.

    Оценка параметров сигнала.

    Воспроизведение сообщения.

Наиболее просто решается первая задача, в которой с заданными вероятностями правильного обнаружения и ложной тревоги следует принять решение о наличии известного сигнала в принятом сообщении. Чем выше уровень задачи, тем сложнее становится схема принимающего устройства.

2. Энергия, мощность, ортогональность и когерентность сигналов. Взаимная энергия сигналов (интеграл похожести). Понятие нормы сигнала.

Похожие публикации