Пространственные и динамические модели. Статические и динамические модели

Пространственное объединение отдельных элементов технического объекта широко распространенная задача проектирования в любой отрасли техники: радиоэлектроники, машиностроения, энергети­ки и т. д. Значительную частью пространственного моделирования доставляет визуализация отдельных элементов и технического объекта в целом Большой интерес представляют вопросы построения базы данных графических трехмер­ных моделей элементов, алгоритмы и программная реализация графи­ческих приложений для решения данной задачи.

Построение моделей элементов носит универсальный характер и может рассматриваться как инвариантная часть многих систем пространственного моделирования и автоматизированного проектирования технических объектов.

Независимо от возможностей используемой графической среды по характеру формирования графических моделей можно выделить три группы элементов:

1.Уникальные элементы, конфигурация и размеры которых не повторяются в других аналогичных деталях.

2.Унифицированные элементы, включающие некоторый набор Фрагментов конфигураций, характерных для деталей данного класса. Как правило, существует ограниченный ряд типоразмеров унифицированного элемента.

3.Составные элементы, включающие как уникальные, так и унифицированные элементы в произвольном наборе. Используемые графические средства могут допускать некоторую вложенность составных элементов.

Пространственное моделирование уникальных элементов не представляет большой сложности. Прямое формирование конфигурации модели выполняется в интерактивном режиме, после чего программ­ная реализация оформляется на основе протокола формирования мо­дели или текстового описания полученного элемента.

2.Поочередный выбор фрагментов пространственной конфигурации и определение их размеров;

3.Привязка графической модели элемента к прочим элемента, технического объекта или системы;

4.Ввод дополнительной информации о моделируемом элементе

Данный подход формирования моделей унифицированных элементов обеспечивает надежную программную реализацию.

Модель составных элементов состоит из совокупности модели как уникальных, так и унифицированных элементов. Процедурно модель составного элемента строится аналогично модели унифицированного элемента, в которой в качестве графических фрагменте: выступают готовые модели элементов. Основными особенностями являются способ взаимной привязки включаемых моделей и механик объединения отдельных фрагментов в составной элемент. Последнее определяется, главным образом, возможностями инструментальных графических средств.

Интеграция графической среды и системы управления базами данных (СУБД) технической информации обеспечивает открытость системы моделирования для решения других задач проектирования: предварительные конструкторские расчеты, подбор элементной базы, оформление конструкторской документации (текстовой и графической) и др. Структура баз данных (БД) определяется как требованиями графических моделей так и информационными потребностями сопутствующих задач. В качестве инструментальных средств возможно использовать любую СУБД, сопрягаемую с графической средой. Наиболее общий характер носит построение моделей унифицированных элементов. На первом этапе в результате систематизации номенклатуры элементов, однотипных по назначению и составу гра­фических фрагментов, формируется гипотетический или выбирается существующий образец моделируемого элемента, обладающий полным набором моделируемых частей объекта.

    Методы интерполяции по дискретно расположенным точкам.

Общая задача интерполяции по точкам формулируется так: дан ряд точек (узлов интерполяции), положение и значения характеристик в которых известны, необходимо определить значения характеристик для других точек, для которых известно только положение. При этом различают методы глобальной и локальной интерполяции, и среди них точные и аппроксимирующие.

При глобальной интерполяции для всей территории одновременно используется единая функция вычисления z = F(x,y) . В этом случае изменение одного значения (х, у) на входе сказывается на всей результирующей ЦМР. При локальной интерполяции многократно применяют алгоритм вычисления для некоторых выборок из общего набора точек, как правило, близко расположенных. Тогда изменение выбора точек сказывается лишь на результатах обработки небольшого участка территории. Алгоритмы глобальной интерполяции создают сглаженные поверхности с небольшим числом резких перепадов; они применяются в случаях, если предположительно известна форма поверхности, например тренд. При включении в процесс локальной интерполяции большой доли общего набора данных она, по сути, становится глобальной.

    Точные методы интерполяции.

Точные методы интерполяции воспроизводят данные в точках (узлах), на которых базируется интерполяция, и поверхность проходит через все точки с известными значениями. анализ соседства, в котором все значения моделируемых характеристик принимаются равными значениям в ближайшей известной точке. В результате образуются полигоны Тиссена с резкой сменой значений на границах. Такой метод применяется в экологических исследованиях, при оценке зон воздействия, и больше подходит для номинальных данных.

В методе В-сплайнов строят кусочно-линейный полином, позволяющий создать серию отрезков, которые в конечном итоге образуют поверхность с непрерывными первой и второй производными. Метод обеспечивает непрерывность высот, уклонов, кривизны. Результирующая ЦМР имеет растровую форму. Этот метод локальной интерполяции применяется, главным образом, для плавных поверхностей и не годится для поверхностей с отчетливо выраженными изменениями - это приводит к резким колебаниям сплайна. Он широко используется в программах интерполяции поверхностей общего назначения и сглаживания изолиний при их рисовке.

В TIN-моделях поверхность в пределах каждого треугольника обычно представляется плоскостью. Поскольку для каждого треугольника она задается высотами трех его вершин, то в общей мозаичной поверхности треугольники для смежных участков точно прилегают по сторонам: образуемая поверхность непрерывна. Однако, если на поверхности проведены горизонтали, то в этом случае они будут прямолинейны и параллельны в пределах треугольников, а на границах будет происходить резкое изменение их направления. Поэтому для некоторых приложений TIN в пределах каждого треугольника строится математическая поверхность, характеризующаяся плавным изменением углов наклона на границах треугольников. Анализ трендов. Поверхность аппроксимируется многочленом и структура выходных данных имеет вид алгебраической функции, которую можно использовать для расчета значений в точках растра или в любой точке поверхности. Линейное уравнение, например, z = а + b х + су описывает наклонную плоскую поверхность, а квадратичное z = а + b х + су + dx 2 + еху + fy 2 -простой холм или долину. Вообще говоря, любое сечение поверхности т-го порядка имеет не более (т – 1) чередующихся максимумов и минимумов. Например, кубическая поверхность может иметь в любом сечении один максимум и один минимум. Возможны значительные краевые эффекты, поскольку полиномиальная модель дает выпуклую поверхность.

Методы скользящего среднего и среднего взвешенного по расстоянию используются наиболее широко, особенно для моделирования плавно меняющихся поверхностей. Интерполированные значения представляют собой среднюю величину значений для п известных точек, либо среднее, полученное по интерполируемым точкам, и в общем случае обычно представляются формулой

    Аппроксимационные методы интерполяции.

Аппроксимационные методы интерполяции применяются в тех случаях, когда имеется некоторая неопределенность в отношении имеющихся данных о поверхности; в их основе лежит соображение о том, что во многих наборах данных отображается медленно изменяющийся тренд поверхности, на который накладываются местные, быстро меняющиеся отклонения, приводящие к неточностям или ошибкам в данных. В таких случаях сглаживание за счет аппроксимации поверхности позволяет уменьшить влияние ошибочных данных на характер результирующей поверхности.

    Методы интерполяции по ареалам.

Интерполяция по ареалам заключается в переносе данных с одного исходного набора ареалов (ключевого) на другой набор (целевой) и часто применяется при районировании территории. Если целевые ареалы представляют собой группировку ключевых ареалов, сделать это просто. Трудности возникают, если границы целевых ареалов не связаны с исходными ключевыми.

Рассмотрим два варианта интерполяции по ареалам: в первом из них в результате интерполяции суммарное значение интерполируемого показателя (например, численности населения) целевых ареалов в полном объеме не сохраняется, во втором - сохраняется.

Представим, что имеются данные о численности населения для некоторых районов с заданными границами, и их нужно распространить на более мелкую сетку районирования, границы которой в общем не совпадают с первой.

Методика заключается в следующем. Для каждого исходного района (ключевого ареала) рассчитывают плотность населения путем деления общего количества проживающих на площадь участка и присваивают полученное значение центральной точке (центроиду). На основе этого набора точек с помощью одного из методов, описанных выше, интерполируется регулярная сетка, для каждой ячейки сети определяется численность населения путем умножения рассчитанной плотности на площадь ячейки. Интерполированная сетка накладывается на итоговую карту, значения по каждой ячейке относятся к границам соответствующего целевого ареала. Затем рассчитывается общая численность населения каждого из итоговых районов.

К недостаткам метода можно отнести не совсем четкую определенность выбора центральной точки; методы интерполяции по точкам неадекватны, и что важнее всего - не сохраняется суммарная величина интерполируемого показателя ключевых ареалов (в данном случае общей численности населения зон переписи). Например, если исходная зона разделена на две целевые, то общее количество населения в них после интерполяции не обязательно будет равно численности населения исходной зоны.

Во втором варианте интерполяции применяют способы ГИС-технологии оверлея или построения гладкой поверхности, основанного на так называемой адаптивной интерполяции.

В первом способе осуществляют наложение ключевых и целевых ареалов, определяют долю каждого из исходных ареалов в составе целевых, величины показателя каждого исходного ареала делят пропорционально площадям его участков в разных целевых ареалах. Считается, что плотность показателя в пределах каждого ареала одинакова, например, если показатель - это общее население ареала, то плотность населения считается для него постоянной величиной.

Целью второго способа является создание гладкой поверхности без уступов (значения атрибутов не должны резко изменяться на границах ареалов) и сохранение суммарной величины показателя в пределах каждого ареала. Методика его такова. На картограмму, представляющую ключевые ареалы, накладывают густой растр, общее значение показателя для каждого ареала поровну делится между ячейками растра, перекрывающими ее, значения сглаживают путем замены величины для каждой ячейки растра средним по окрестности (по окну 2×2, 3×3, 5×5) и суммируют значения для всех ячеек каждого ареала. Далее значения для всех ячеек корректируют пропорционально так, чтобы общее значение показателя для ареала совпадало с исходным (например, если сумма меньше исходного значения на 10%, значения для каждой ячейки увеличиваются на 10%). Процесс повторяют до тех пор, пока не. прекратятся изменения.

Для описанного метода однородность в пределах ареалов необязательна, но слишком сильные вариации показателя в их пределах могут отразиться на качестве интерполяции.

Результаты могут быть представлены на карте горизонталями или непрерывными полутонами.

Применение метода требует задания некоторых граничных условий, так как по периферии исходных ареалов элементы растра могут выходить за пределы области изучения или соседствовать с ареалами, не имеющими значения интерполируемого показателя. Можно, например, присвоить плотности населения значение 0 (озеро и т. п.) или принять ее равной значениям самых дальних от центра ячеек области изучения.

При интерполяции по ареалам могут возникнуть весьма сложные случаи, например, когда нужно создать карту, показывающую «ареалы расселения», на основе данных о населении отдельных городов, особенно если эти ареалы в масштабе карты показываются точкой. Проблема возникает и для небольших исходных ареалов, когда отсутствуют файлы границ, а в данных указывается только положение центральной точки. Здесь возможны разные подходы: замена точек, к которым приписаны данные, на круги, радиус которых оценивается по расстояниям до соседних центроидов; определение пороговой плотности населения для отнесения территории к городской; распределение населения каждого города по его территории так, что в центре плотность населения выше, а к окраинам уменьшается; по точкам с пороговым значением показателя проводят линии, ограничивающие заселенные территории.

Часто попытка создать непрерывную поверхность с помощью интерполяции по ареалам по данным, приуроченным только к точкам, приводит к неправильным результатам.

Пользователь обычно оценивает успешность применения метода субъективно и, главным образом, визуально. До сих пор многие исследователи используют ручную интерполяцию или интерполяцию «на глазок» (этот метод обычно невысоко оценивается географами и картографами, однако широко используется геологами). В настоящее время предпринимаются попытки «извлечь» познания экспертов с помощью методов создания баз знаний и ввести их в экспертную систему, осуществляющую интерполяцию.

Трехмерные картографические изображения являются электронными картами более высокого уровня и представляют собой визуализированные на средствах компьютерных систем моделирования пространственные образы основных элементов и объектов местности. Они предназначены для использования в системах управления и навигации (наземной и воздушной) при анализе местности, решении расчетных задач и моделировании, проектировании инженерных сооружений, мониторинге окружающей среды.

Технология моделирования местности позволяет создавать наглядные и измеримые перспективные изображения, весьма похожие на реальную местность. Их включение по определенному сценарию в компьютерный фильм позволяет при его просмотре "увидеть" местность с разных точек съемки, в различных условиях освещенности, для различных времен года и суток (статическая модель) или "пролететь" над ней по заданным или произвольным траекториям движения и скорости полета - (динамическая модель).

Использование компьютерных средств, в состав которых входят векторные или растровые дисплеи, позволяющие осуществлять в своих буферных устройствах преобразование входной цифровой информации в заданный кадр, требует предварительного создания в качестве такой информации цифровых пространственных моделей местности (ПММ).

Цифровые ПММ по своей сущности представляют собой совокупность цифровых семантических, синтаксических и структурных данных, записанных на машинный носитель, предназначенных для воспроизведения (визуализации) объемных образов местности и топографических объектов в соответствии с заданными условиями наблюдения (обзора) земной поверхности.

Исходными данными для создания цифровых ПММ могут служить фотоснимки, картографические материалы, топографические и цифровые карты, планы городов и справочная информация, обеспечивающие получение данных о положении, форме, размерах, цвете, и назначении объектов. При этом полнота ПММ будет определяться информативностью используемых фотоснимков, а точность - точностью исходных картографических материалов.

Технические средства и методы создания ПММ

Разработка технических средств и методов создания цифровых ПММ является непростой научно-технической проблемой. Решение этой проблемы предполагает:

Разработку аппаратно-программных средств получения первичной трехмерной цифровой информации об объектах местности по фотоснимкам и картматериалам;
- создание системы трехмерных картографических условных знаков;
- разработку методов формирования цифровых ПММ с использованием первичной картографической цифровой информации и фотоснимков;
- разработку экспертной системы формирования содержания ПММ;
- разработку методов организации цифровых данных в банке ПММ и принципов построения банка ПММ.



Разработка аппаратно-программных средств получения первичной трехмерной цифровой информации об объектах местности по фотоснимкам и картматериалам обусловлена следующими принципиальными особенностями:

Более высокими, по сравнению с традиционными ЦКМ, требованиями к цифровым ПММ по полноте и точности;
- использованием в качестве исходных дешифровочных фотоснимков, получаемых кадровыми, панорамными, щелевыми и ПЗС съемочными системами и не предназначенных для получения точной измерительной информации об объектах местности.

Создание системы трехмерных картографических условных знаков является принципиально новой задачей современной цифровой картографии. Ее суть заключается в создании библиотеки условных знаков, близких к реальному изображению объектов местности.

Методы формирования цифровых ПММ с использованием первичной цифровой картографической информации и фотоснимков должны обеспечить, с одной стороны, оперативность их визуализации в буферных устройствах компьютерных систем, а, с другой стороны, требуемые полноту, точность и наглядность трехмерного изображения.

Исследования, выполняемые в настоящее время, показали, что для получения цифровых ПММ, в зависимости от состава исходных данных могут быть применимы методы, использующие:

Цифровую картографическую информацию;
- цифровую картографическую информацию и фотоснимки;
- фотоснимки.

Наиболее перспективными представляются методы , использующие цифровую картографическую информацию и фотоснимки. Основными из них могут быть методы создания цифровых ПММ различной полноты и точности: по фотоснимкам и ЦМР; по фотоснимкам и ЦКМ; по фотоснимкам и ЦММ.

Разработка экспертной системы формирования содержания ПММ должна обеспечить решение задач проектирования пространственных изображений путем отбора объектового состава, его обобщения и символизации и вывода на экран отображения в требуемой картографической проекции. При этом потребуется разработать методику описания не только условных знаков, но и пространственно-логических отношений между ними.

Решение задачи разработки методов организации цифровых данных в банке ПММ и принципов построения банка ПММ определяется спецификой пространственных изображений, форматами представления данных. Вполне возможно, что потребуется создавать пространственно-временной банк с четырехмерными моделированием (Х,У,Н,t), где будут генерироваться ПММ в режиме реального времени.

Технические и программные средства отображения и анализа ПММ

Второй проблемой является разработка технических и программных средств отображения и анализа цифровых ПММ. Решение данной проблемы предполагает:

Разработку технических средств отображения и анализа ПММ;
- разработку способов решения расчетных задач.

Разработка технических и программных средств отображения и анализа цифровых ПММ потребует использования существующих графических рабочих станций, для которых должно быть создано специальное программное обеспечение (СПО).

Разработка способов решения расчетных задач является прикладной задачей, возникающей в процессе использования цифровых ПММ в практических целях. Состав и содержание данных задач будут определяться конкретными потребителями ПММ.

Модель называется статической, когда входные и выходные воздействия постоянны во времени. Статическая модель описывает установившийся режим.

Модель называется динамической, если входные и выходные переменные изменяются во времени. Динамическая модель описывает неустановившийся режим работы изучаемого объекта.

Исследование динамических свойств объектов позволяет в соответствии с фундаментальным принципом определенности Гюйгенса-Адамара ответить на вопрос: как изменяется состояние объекта при известных воздействиях на него и заданном начальном состоянии.

Примером статической модели является зависимость длительности технологической операции от затрат ресурсов. Статическая модель описывается алгебраическим уравнением

Примером динамической модели является зависимость объемов выпуска товарной продукции предприятия от размеров и сроков капитальных вложений, а также затраченных ресурсов.

Динамическая модель часто описывается дифференциальным уравнением

Уравнение связывает неизвестную переменную Y и ее производные с независимой переменной t и заданной функцией времени Х(t) и ее производными.

Динамическая система может функционировать в непрерывном или дискретном, квантованном на равные интервалы, времени. В первом случае система описывается дифференциальным уравнением, а во втором случае – конечно-разностным уравнением.

Если множества входных, выходных переменных и моментов времени конечны, то система описывается конечным автоматом.

Конечный автомат характеризуется конечным множеством состояний входа ; конечным множеством состояний ; конечным множеством внутренних состояний ; функцией переходов T(x, q) , определяющих порядок смены внутренних состояний; функцией выходов P(x, q) задающей состояние выхода в зависимости от состояния входа и внутреннего состояния.

Обобщением детерминированных автоматов являются стохастические автоматы , которые характеризуются вероятностями переходов из одного состояния в другое. Если функционирование динамической системы имеет характер обслуживания возникающих заявок, то модель системы строится с использованием методов теории массового обслуживания.

Динамическую модель называют стационарной , если свойства преобразования входных переменных не изменяются со временем. В противном случае ее называют нестационарной .

Различают детерминированные и стохастические (вероятностные ) модели. Детерминированный оператор позволяет однозначно определить выходные переменные по известным входным переменным.

Детерминированность модели означает лишь неслучайность преобразования входных переменных , которые сами по себе могут быть как детерминированными, так и случайными.

Стохастический оператор позволяет определить по заданному распределению вероятностей входных переменных и параметров системы распределение вероятностей входных переменных.

С точки зрения входных и выходных переменных модели классифицируют следующим образом:

1. Входные переменные подразделяют на управляемые и неуправляемые . Первые могут изменяться по усмотрению исследователя и используются объектом. Вторые непригодны для управления.

2. В зависимости от размерности векторов входных и выходных переменных различают одномерные и многомерные модели. Под одномерной моделью будем понимать такую модель, у которой входная и выходная переменные являются одновременно скалярными величинами. Многомерной называют модель, у которой векторы x (t ) и y (t ) имеют размерность n ³ 2.

3. Модели, у которых входныеи выходные переменные являются непрерывными по времени и по величине, называют непрерывными . Модели, у которых входные и выходные переменные дискретны или по времени, или по величине, называют дискретными .

Отметим, что динамика сложных систем во многом зависит от решений, принимаемых человеком. Процессы, протекающие в сложных системах, характеризуются большим числом параметров – большим в том смысле, что соответствующие уравнения и соотношения аналитически не могут быть разрешены. Часто изучаемые сложные системы уникальны по сравнению даже с аналогичными по назначению системами. Продолжительность экспериментов с такими системами обычно велика и часто оказывается сравнимой со сроком их жизни. Иногда проведение активных экспериментов с системой вообще недопустимо.

Для сложного объекта часто оказывается невозможным определить содержание каждого шага управления. Это обстоятельство определяет настолько большое число ситуаций, характеризующих состояние объекта, что практически невозможно проанализировать влияние каждой из них на принимаемые решения. В этой ситуации вместо жесткого алгоритма управления, предписывающего на каждом шаге его реализации некоторое однозначное решение, приходится использовать совокупность указаний, соответствующую тому, что в математике принято называть исчислением. В отличие от алгоритма в исчислении продолжение процесса на каждом шаге не является фиксированным и есть возможность произвольного продолжения процесса поиска решения. Исчисления и подобные им системы изучаются в математической логике.

1.5. Концепция построения системной модели сложных объектов

Сложные объекты представляют собой совокупность отдельных конструктивно обособленных элементов: технологических агрегатов, транспортных магистралей, электрических приводов и т. д., связанных между собой материальными, энергетическими и информационными потоками, и взаимодействующих с окружающей средой как целое. Процессы энергомассообмена, происходящие в сложных объектах, являются направленными и связаны с движением полей и вещества (теплообмен, фильтрация, диффузия, деформация и т. д.). Как правило, эти процессы содержат неустойчивые стадии развития, и управление такими процессами является больше искусством, чем наукой. Вследствие этих обстоятельств, наблюдается нестабильное качество управления такими объектами. Резко возрастают требования к квалификации технологического персонала и существенно увеличивается время на его подготовку.

Элементом системы называется некоторый объект (материальный, энергетический, информационный), обладающий рядом важных для нас свойств, внутреннее строение (содержание) которого не представляет интереса с точки зрения цели анализа .

Будем обозначать элементы через М , а всю их рассматриваемую (возможную) совокупность – через {М} . Принадлежность элемента к совокупности принято записывать .

Связью назовем важный для целей рассмотрения обмен между элементами: веществом, энергией, информацией.

Единичным актом связи выступает воздействие . Обозначая все воздействия элемента M 1 на элемент M 2 через x 12 , а элемента М 2 на М 1 – через x 21 , можно изобразить связь графически (рис. 1.6).

Рис. 1.6. Связь двух элементов

Системой назовем совокупность элементов, обладающую следующими признаками:

а) связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности;

б) свойством (назначением, функцией), отличным от свойств отдельных элементов совокупности.

Назовем признак а) связностью системы, б) – ее функцией. Применяя так называемое “кортежное” (т. е. последовательность в виде перечисления) определение системы, можно записать

где Σ– система; {М } совокупность элементов в ней; {x } – совокупность связей; F – функция (новое свойство) системы.

Будем рассматривать запись как наиболее простое описание системы.

Практически любой объект с определенной точки зрения может рассматриваться как система. Важно отдавать себе отчет, полезен ли такой взгляд или разумней считать данный объект элементом. Так, системой можно считать радиотехническую плату, преобразующую входной сигнал в выходной. Для специалиста по элементной базе системой будет слюдяной конденсатор в этой плате, а для геолога – и сама слюда, имеющая достаточно сложное строение.

Большой системой назовем систему, включающую значительное число однотипных элементов и однотипных связей.

Сложной системой назовем систему, состоящую из элементов разных типов и обладающую разнородными связями между ними.

Часто сложной системой считают только ту, которая является большой. Разнородность элементов можно подчеркнуть записью

Большой, но не сложной с точки зрения механики, системой является собранная из стержней стрела крана или, например, труба газопровода. Элементами последней будут ее участки междусварными швами или опорами. Для расчетов на прогиб элементами газопровода скорее всего будут считаться относительно небольшие (порядка метра) участки трубы. Так поступают в известном методе конечных элементов. Связь в данном случае носит силовой (энергетический) характер – каждый элемент действует на соседний.

Различие между системой, большой системой и сложной системой условно. Так, корпуса ракет или судов, которые на первый взгляд однородны, обычно относят к сложной системе из-за наличия переборок разного вида.

Важным классом сложных систем являются автоматизированные системы. Слово “автоматизированный” указывает на участие человека, использование его активности внутри системы при сохранении значительной роли технических средств. Так, цех, участок, сборка могут быть как автоматизированными, так и автоматическими (“цех-автомат”). Для сложной системы автоматизированный режим считается более предпочтительным. Например, посадка самолета выполняется при участии человека, а автопилот обычно используется лишь на относительно простых движениях. Также типична ситуации, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.

Итак, автоматизированной системой называется сложная система с определяющей ролью элементов двух типов: а) в виде технических средств; б) в виде действий человека. Ее символьная запись (сравни с и)

где M T технические средства, в первую очередь ЭВМ; M H – решения и другая активность человека; М" – остальные элементы в системе.

В совокупности {х }вэтом случае могут быть выделены связи между человеком и техникой {x T - H }.

Структурой системы называется ее расчленение на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом.

Указанное расчленение может иметь материальную (вещественную), функциональную, алгоритмическую и другую основу. Группы элементов в структуре обычно выделяются по принципу простых или относительно более слабых связей между элементами разных групп. Структуру системы удобно изображать в виде графической схемы, состоящей из ячеек (групп) и соединявших их линий (связей). Такие схемы называются структурными.

Для символьной записи структуры введем вместо совокупности элементов {М },совокупность групп элементов {М* }и совокупность связей между этими группами {x* }.Тогда структура системы может быть записана как

Структуру можно получить из объединением элементов в группы. Отметим, что функция (назначение) F системы в опущена.

Приведем примеры структур. Вещественная структура сборного моста состоит из его отдельных, собираемых на месте секций. Грубая структурная схема такой системы укажет только эти секции и порядок их соединения. Последнее и есть связи, которые здесь носят силовой характер. Пример функциональной структуры – это деление двигателя внутреннего сгорания на системы питания, смазки, охлаждения, передачи силового момента и т. д. Пример системы, где вещественные и функциональные структуры слиты, – это отделы проектного института, занимающиеся разными сторонами одной и той же проблемы.

Типичной алгоритмической структурой будет алгоритм (схема) программного средства, указывающая последовательность действий. Также алгоритмической структурой будет инструкция, определяющая действия при отыскании неисправности технического объекта.

1.6. Основные этапы инженерного эксперимента, направленного на изучение сложных объектов

Дадим характеристику основных этапов инженерного эксперимента, направленного на изучение сложных объектов.

1. Построение физической основы модели.

Построение физической основы модели, позволяющей выделить наиболее существенные процессы, определяющие качество управления и определить соотношения детерминированных и статистических составляющих в наблюдаемых процессах. Физическая основа модели строится с использованием “проектирования” сложного объекта в различные предметные области, используемые для описания исследуемого объекта. Каждая предметная область задает собственные системы ограничений на возможные “движения” объекта. Учет совокупности этих ограничений позволяет обосновать комплекс используемых моделей и построить непротиворечивую модель.

Построение “каркаса” модели, т. е. ее физической основы, сводится к описанию системы отношений, характеризующих исследуемый объект, в частности, законов сохранения и кинетики процессов. Анализ системы отношений, характеризующих объект, позволяет определить пространственные и временные масштабы механизмов, инициирующих наблюдаемое поведение процессов, качественно охарактеризовать вклад статистического элемента в описание процесса, а также выявить принципиальную неоднородность (если она существует!) наблюдаемых временных рядов.

Построение “каркаса” сводится к установлению по априорным данным причинно-следственных связей между внешними и внутренними дестабилизирующими факторами и эффективностью работы системы, а количественные оценки этих связей конкретизируются путем проведения экспериментов на объекте. Тем самым гарантируется общность полученных результатов для всего класса объектов, их непротиворечивость по отношению к ранее полученным знаниям и обеспечивается уменьшение объема экспериментальных исследований. “Каркас” модели должен строиться с использованием структурно-феноменологического подхода, объединяющего исследование объекта по его реакциям на “внешние” воздействия и раскрытие внутреннего строения объекта исследования.

2. Проверка статистической устойчивости результатов наблюдений и определение характера изменения контролируемых переменных.

Эмпирическое обоснование статистической устойчивости сводится к исследованию устойчивости эмпирического среднего по мере возрастания объема выборки (схема удлиняющейся серии). Непредсказуемость экспериментально полученных значений, как известно, не является ни необходимым, ни достаточным условием применения теоретико-вероятностных понятий. Необходимым условием применения теории вероятностей является устойчивость усредненных характеристик исходных величин. Таким образом, требуется проверка с использованием эмпирической индукции статистической устойчивости n -мерной эмпирической функции распределения исходной случайной величины и распределения вероятностей для выборочных оценок.

3. Формирование и проверка гипотез о структуре и параметрах “движения” исследуемого объекта.

Отметим, что, как правило, мотивом для выбора статистического подхода является отсутствие регулярности наблюдаемого процесса, хаотический характер и резкие изломы. В этом случае исследователь не может визуально обнаружить закономерности в ряду наблюдений и воспринимает его как реализацию случайного процесса. Подчеркнем, что речь идет об обнаружении простейших закономерностей, поскольку для обнаружения сложных закономерностей нужна направленная математическая обработка результатов наблюдений.

4. Прогнозирование выходных переменных выполняется с учетом вклада детерминированных и статистических составляющих в конечный результат.

Отметим, что использование для прогнозирования только статистического подхода наталкивается на серьезные трудности. Во-первых, для принятия решений, касающихся минимизации текущих потерь, важно знать, не как в среднем развивается процесс, а как он будет себя вести на конкретном отрезке времени. Во-вторых, в общем случае мы имеем задачу прогнозирования нестационарного, случайного процесса с изменяющимися математическим ожиданием, дисперсией и самим видом закона распределения.

5. Планирование и реализация вычислительного эксперимента, направленного на оценку регулировочных характеристик объекта и ожидаемой эффективности системы управления.

Задачи синтеза структуры сложных систем только в простейших случаях могут быть решены аналитически. Поэтому возникает потребность в имитационном моделировании (ИМ) элементов проектируемой системы.

ИМ – это особый способ исследования объектов сложной структуры, заключающийся в воспроизведении численным образом всех входных и выходных переменных каждого элемента объекта. ИМ позволяет на этапе анализа и синтеза структуры учесть не только статистические взаимосвязи между элементами системы, но и динамические аспекты ее функционирования.

Для составления ИМ необходимо:

– выделить в объекте моделирования простейшие элементы, для которых известен способ расчета выходных переменных;

– составить уравнения связи, описывающие порядок соединения элементов в объекте;

– составить структурную схему объекта;

– выбрать средства автоматизации моделирования;

– разработать программу ИМ;

– провести вычислительные эксперименты с целью оценки адекватности ИМ, устойчивости результатов имитации и чувствительности ИМ к изменениям управляющих и возмущающих воздействий;

– решить с использованием модели задачу синтеза системы управления.

До последнего времени географические факторы, оказывающие существенно важное влияние на распространение заболеваний, исследовались сравнительно мало. Справедливость предположения об однородном перемешивании населения в небольшом городе или деревне уже давно ставилась под сомнение, хотя вполне допустимо в качестве первого приближения принять, что перемещения источников инфекции носят случайный характер и во многом напоминают движение частиц в коллоидном растворе. Тем не менее необходимо, конечно, иметь некоторое представление о том, к какому эффекту может привести наличие большого числа восприимчивых индивидуумов в пунктах, удаленных на довольно большие расстояния от любого данного источника инфекции.

В детерминистской модели, принадлежащей Д. Кендаллу, предполагается существование бесконечного двумерного континуума популяции, в которой на единицу площади приходится о индивидуумов. Рассмотрим область , окружающую точку Р, и допустим, что числа восприимчивых, зараженных и удаленных из коллектива индивидуумов равны соответственно . Величины х, у и z могут быть функциями времени и положения, однако их сумма должна равняться единице. Основные уравнения движения, аналогичные системе (9.18), имеют вид

где - пространственно взвешенное среднее значение

Пусть и - постоянные, - элемент площади, окружающий точку Q, и - неотрицательный весовой коэффициент.

Допустим, что начальная концентрация заболеваний равномерно распределена в некоторой небольшой области, окружающей первоначальный очаг. Заметим также, что в произведение Роху в явном виде введен множитель о, с тем чтобы скорость распространения инфекции оставалась независимой от плотности популяции. Если бы у оставалось постоянным на плоскости, то интеграл (9.53) наверняка сходился бы. В этом случае удобно было бы потребовать, чтобы

Описанная модель позволяет довольно далеко продвинуть математические исследования. Можно показать (с одной-двумя оговорками), что пандемия охватит всю плоскость в том и только в том случае, если плотность популяции превышает пороговое значение . Если пандемия возникла, то ее интенсивность определяется единственным положительным корнем уравнения

Смысл этого выражения состоит в том, что доля индивидуумов, заболевающих в конце концов в любой области, как бы далеко она ни отстояла от первоначального эпидемического очага, будет не меньше?. Очевидно, что эта теорема Кендалла о пороге пандемии аналогична пороговой теореме Кермака и Мак-Кендрика, в которой пространственный фактор не учитывался.

Можно также построить модель для следующего частного случая. Пусть х и у - пространственные плотности восприимчивых и зараженных индивидуумов соответственно. Если считать инфекцию локальной и изотропной, то нетрудно показать, что уравнения, соответствующие первым двум уравнениям системы (9.18), можно записать в виде

где не пространственные координаты] и

Для начального периода, когда можно приближенно считать постоянной величиной, второе уравнение системы (9.56) примет вид

Это стандартное уравнение диффузии, решение которого имеет вид

где постоянная С зависит от начальных условий.

Общее число зараженных индивидуумов, находящихся вне круга радиусом R, равно

Следовательно,

и если , то . Радиус соответствующий какому-либо выбранному значению растет со скоростью . Эту величину можно рассматривать как скорость распространения эпидемии, и ее предельное значение для больших t равно . В одном из случаев эпидемии кори в Глазго в течение почти полугода скорость распространения составляла около 135 м в неделю.

Уравнения (9.56) легко видоизменить так, чтобы была учтена миграция восприимчивых и зараженных индивидуумов, а также появление новых восприимчивых индивидуумов. Как и в случае повторяющихся эпидемий, рассмотренных в разд. 9.4, здесь возможно равновесное решение, однако небольшие колебания затухают столь же быстро или даже быстрее, чем в непространственной модели. Таким образом, ясно, что в данном случае детерминистский подход имеет определенные ограничения. В принципе следовало бы, конечно, предпочесть стохастические модели, но обычно анализ их сопряжен с огромными трудностями, во всяком случае если он проводится чисто математическим путем.

Было выполнено несколько работ по моделированию этих процессов. Так, Бартлетт использовал ЭВМ для изучения нескольких последовательных искусственных эпидемий. Пространственный фактор был учтен введением сетки ячеек . Внутри каждой ячейки использовались типичные непространственные модели для непрерывного или дискретного времени и допускалась случайная миграция зараженных индивидуумов между ячейками, имеющими общую границу. Была получена информация о критическом объеме популяции, ниже которого происходит затухание эпидемического процесса. Основные параметры модели были получены на основе фактических эпидемиологических и демографических данных.

Недавно автор этой книги предпринял ряд аналогичных исследований, в которых была сделана попытка построить пространственное обобщение стохастических моделей для простого и общего случаев, рассмотренных в разд. 9.2 и 9.3. Допустим, что имеется квадратная решетка, каждый узел которой занят одним восприимчивым индивидуумом. В центре квадрата помещается источник инфекции и рассматривается такой процесс цепочечно-биномиального типа для дискретного времени, в котором опасности заражения подвергаются только индивидуумы, непосредственно примыкающие к какому-либо источнику инфекции. Это могут быть либо только четыре ближайших соседа (схема 1), либо также индивидуумы, расположенные по диагонали (схема 2); во втором случае всего будет восемь индивидуумов, лежащих на сторонах квадрата, центр которого занимает источник инфекции.

Очевидно, что выбор схемы произволен, однако в нашей работе использовалось последнее расположение.

Сначала была рассмотрена простая эпидемия без случаев выздоровления. Для удобства использовалась решетка ограниченного размера, и информация о состоянии каждого индивидуума (т. е. восприимчив ли он к инфекции или является ее источником) хранилась в вычислительной машине. В процессе моделирования проводилась текущая запись изменений состояния всех индивидуумов и подсчитывалось общее число новых случаев заболевания во всех квадратах с первоначальным источником инфекции в центре. В памяти машины фиксировались также текущие значения суммы и суммы квадратов числа случаев. Это позволило довольно легко вычислить средние значения и средние квадратические ошибки. Детали этого исследования будут опубликованы в отдельной статье, а здесь мы отметим лишь одну-две частные особенности этой работы. Например, ясно, что при очень высокой вероятности достаточного контакта будет иметь место почти детерминированное распространение эпидемии, при котором на каждом новом этапе развития эпидемии будет добавляться новый квадрат с источниками инфекции.

При меньших вероятностях будет иметь место действительно стохастическое распространение эпидемии. Так как каждый источник инфекции может заразить только восемь своих ближайших соседей, а не всю популяцию, то можно ожидать, что эпидемическая кривая для всей решетки будет возрастать не столь резко, как при однородном перемешивании всей популяции. Этот прогноз действительно оправдывается, и число новых случаев увеличивается с течением времени более или менее линейно до тех пор, пока не начнут сказываться краевые эффекты (поскольку решетка имеет ограниченную протяженность).

Таблица 9. Пространственная стохастическая модель простой эпидемии, построенная на решетке 21x21

В табл. 9 приведены результаты, полученные для решетки при наличии одного исходного источника инфекции и вероятности достаточного контакта, равной 0,6. Можно видеть, что между первым и десятым этапами эпидемии среднее число новых случаев каждый раз увеличивается примерно на 7,5. После этого начинает преобладать краевой эффект, и эпидемическая кривая резко падает вниз.

Можно также определить среднее число новых случаев для любой данной точки решетки и найти таким образом эпидемическую кривую для этой точки. Удобно проводить усреднение по всем точкам, лежащим на границе квадрата, в центре которого находится источник инфекции, хотя симметрия в этом случае не будет полной. Сравнение результатов для квадратов различного размера дает картину эпидемической волны, движущейся от первоначального источника инфекции.

Здесь мы имеем последовательность распределений, моды которых увеличиваются в линейной прогрессии, а дисперсия непрерывно возрастает.

Было также выполнено более детальное исследование эпидемии общего типа с удалением зараженных индивидуумов. Безусловно, все это очень упрощенные модели. Однако важно понять, что они могут быть значительно усовершенствованы. Чтобы учесть мобильность популяции, надо допустить, что восприимчивые индивидуумы заражаются и от тех источников инфекции, которые не являются их ближайшими соседями. Возможно, здесь придется использовать какой-то весовой коэффициент, зависящий от расстояния. Видоизменения, которые нужно будет ввести при этом в программу вычислительной машины, сравнительно невелики. На следующем этапе, возможно, удастся описать таким способом реальные или типичные популяции с самой разнообразной структурой. Это откроет возможность оценивать эпидемиологическое состояние реальных популяций с точки зрения опасности возникновения эпидемий различного типа.


Похожие публикации