Катушка Тесла. Устройство и виды

Трансформатор (катушка) Тесла (Tesla Coil, TC) — это повышающий высокочастотный резонансный трансформатор — два колебательных контура, настроенных на одинаковую резонансную частоту. В сети можно найти множество примеров ярких реализаций этого необычного устройства.

Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.

С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы - это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Как работает трансформатор тесла

Катушка Тесла названа так в честь ее изобретателя Николы Тесла (около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.

Принцип действия трансформатора Тесла похож на работу обычного . Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.


колебания напряжения в трансформаторе Тесла

Тесла обладает тремя основными характеристиками:

  1. резонансной частотой вторичного контура,
  2. коэффициентом связи первичной и вторичной обмоток,
  3. добротностью вторичного контура.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Основные детали и конструкции трансформатора Тесла


Конструкция трансформатора тесла

Тороид

Тороид – выполняет три функции.

Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах.

Вторая – накопление энергии перед образованием стримера.

Стример - это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.

Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель.

Третья – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку.

От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички.

Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий,

Вторичная обмотка – основная деталь Теслы

Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1.

Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков.

ВНИМАНИЕ!

Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу.

Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака.

Мотают вторичную обмотку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.

Защитное кольцо

Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичная обмотка трансформатора тесла). Защитное кольцо заземляется на общее заземление отдельным проводом.

Первичная обмотка

Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения.

Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи.

Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура.

Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические - в SSTC, DRSSTC и VTTC.


Заземление

Заземление – как не странно, тоже очень важная деталь теслы. Очень часто задаются вопросом – куда же бьют стримеры? - стримеры бьют в землю!

Стримеры замыкают ток, показанный на картинке синим цветом

Таким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух.

Поэтому задавая вопрос обязательно ли заземлять теслу?

Заземление для теслы – обязательно.

Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed).

Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).

Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.

Вот самые распространенные типы катушек Тесла в зависимости от способа управления ими:

  1. SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор Тесла на искровом промежутке. Это классическая конструкция, подобную схему изначально применял сам Тесла. В качестве коммутирующего элемента здесь используется разрядник. В конструкциях малой мощности разрядник представляет собой два куска толстого провода, расположенных на некотором расстоянии, а в более мощных применяются сложные вращающиеся разрядники с использованием двигателей. Трансформаторы этого типа изготавливают если требуется лишь большая длинна стримера, и не важна эффективность.
  2. VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор Тесла на электронной лампе. В качестве коммутирующего элемента здесь используется мощная радиолампа, например ГУ-81. Такие трансформаторы могут работать в непрерывном режиме и производить довольно толстые разряды. Данный тип питания чаще всего используют для построения высокочастотных катушек, которые из-за типичного вида своих стримеров получили название “факельники”.
  3. SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор Тесла, в котором в качестве ключевого элемента применяются полупроводники. Обычно это IGBT или MOSFET транзисторы. Данный тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых такой катушкой может быть самым разным. Этим типом трансформаторов Тесла проще управлять, например можно играть на них музыку.
  4. DRSSTC (ДРССТЦ, Dual Resonant Solid State Tesla Coil) – трансформатор Тесла с двумя резонансными контурами, здесь в качестве ключей используются, как и в SSTC, полупроводники. ДРССТЦ – наиболее сложный в управлении и настройке тип трансформаторов Тесла.

Для получения более эффективной и эффектной работы трансформатора Тесла применяют именно схемы топологии DRSSTC, когда мощный резонанс достигается и в самом первичном контуре, а во вторичном соответственно - более яркая картина, более длинные и толстые молнии (стримеры).

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
    Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Практическое применение трансформатор тесла

Величина напряжения на выходе трансформатора Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.

Катушка Тесла нашла практическое применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.

Трансформатор Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.

Иногда на практике такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх.

В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Новое в трансформаторах тесла

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей. Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

схема трансформатора тесла на транзисторе

Схема трансформатора тесла выглядит невероятно просто и состоит из:

  1. первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  2. вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  3. разрядника;
  4. конденсатора;
  5. излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов - в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:

  1. Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
  2. Генератор колебания на лампах.
  3. На транзисторах.

Видео: Стоячие волны в Трансформаторе Тесла, резонанс, коэффициент трансформации

Видео: Трансформатор ТЕСЛА своими руками

Видео: Трансформатор Тесла

Пошаговое объяснение процесса сборки и запуска одного из самых мощных трансформаторов Тесла в России. Конструктор: Блотнер Борис

«Человек, который изобрёл 20 век!» - так Теслу называют современные биографы, и делают они это без каких-либо преувеличений. Свою известность он получил благодаря прогрессивным взглядам и умению доказывать их состоятельность. Тесла проводил опаснейшие эксперименты во имя науки, и в определённых кругах считается фигурой, связанной с мистикой. В последнем случае, скорее всего, мы имеем дело с домыслами, но что известно точно, так это то, что изобретения Николы Теслы способствовали прогрессу во всём мире.

Наследие Николы Теслы

Сначала рассмотрим важные с научной точки зрения изобретения, но редко встречающиеся в повседневной жизни современного человека.

Речь пойдёт об одном из самых известных и зрелищных изобретений Николы. Катушка Теслы является разновидностью резонансной трансформаторной схемы. Использовалось это приспособление для производства высокого напряжения высокой частоты .


Катушка Теслы была одним из инструментов изучения природы электрического тока и возможностей его использования

Тесла задействовал катушки во время проведения инновационных экспериментов в области:

  • электрического освещения;
  • фосфоресценции;
  • рентгеновской генерации;
  • высокочастотного переменного тока;
  • электротерапии;
  • радиотехники;
  • передачи электрической энергии без проводов.

Кстати, Никола Тесла был одним из тех людей, кто предсказал появление Интернета и современных гаджетов.

Катушка Теслы является ранним предшественником (наряду с индукционной катушкой) более современного устройства, называемого трансформатором обратного хода. Он обеспечивает напряжение, необходимое для питания электронно-лучевой трубки телевизоров и компьютерных мониторов. Версии этой катушки широко используются сегодня в радио, телевидении и другом электронном оборудовании.

В всей красе катушку можно увидеть в научных музеях или на специальных шоу.

Катушка Теслы в действии – это всегда зрелище:

Эта конструкция, известная также как Башня Теслы, была построена с целью осуществления беспроводной телекоммуникации и демонстрации возможности передачи электроэнергии без проводов .

По задумке Теслы Башня Ворденклиф должна была стать шагом к созданию Всемирной беспроводной системы . В его планах было установить несколько десятков приемо-передающих станций по всему миру. Таким образом, отпала бы необходимость использования высоковольтных линий электропередач. То есть фактически мы получили бы одну всемирную электростанцию. К слову, Тесле удавалось передавать электричество «по воздуху» от одной катушке к другой, так что его амбиции были небезосновательны.

Сегодня Ворденклиф – закрытый объект

Проект Ворденклиф требовал больших капиталовложений и на начальных этапах получил поддержку влиятельных инвесторов. Однако, когда работа над строительством башни была практически завершена, Тесла лишился финансирования и оказался на гране банкротства. А всё потому, что Ворденклиф могла быть предпосылкой к бесплатным поставкам электричества по всему миру, а это могло разорить некоторых инвесторов, чей бизнес был завязан на продаже электроэнергии.

Любители различных теорий заговоров связывают падение Тунгусского метеорита в Сибири и эксперименты Теслы с Башней.

Рентгеновские лучи

Вильгельм Рентген 8 ноября 1895 года официально открыл излучение, названное в честь его. Но фактически это явление первым наблюдал Никола Тесла. Ещё в 1887 году он начал проводить исследования с использованием вакуумных трубок. В ходе экспериментов Тесла фиксировал «особые лучи», способные «просвечивать» предметы . Поначалу учёный не предавал особого значения этому явлению, учитывая, что длительное воздействие рентгеновских лучей опасно для человека.


Никола Тесла первым обратил внимание на опасность рентгеновского излучения

Однако Тесла продолжал исследования в этом направлении и даже провел несколько экспериментов до открытия Вильгема Рентгена, включая фотографирование костей его руки.

К сожалению, в марте 1895 года в лаборатории Теслы произошёл пожар, и записи об этих исследованиях были утрачены. После открытия Рентгена, Никола, используя устройство с вакуумными трубками, сделал снимок своей ноги и отправил коллеге вместе с поздравлениями. Рентген похвалил Теслу за качественную фотографию.


Тот самый снимок ноги в ботинке

Вопреки расхожему мнению, Вильгем Рентген не был знаком с работами Теслы и к своему открытию пришёл самостоятельно, чего не скажешь о Гульельмо Маркони…

Радио и дистанционное управление

Инженеры разных стран работали над технологией радиосвязи, при этом исследования были независимыми друг от друга. Самый яркий пример: советский физик Александр Попов и итальянский инженер Гульельмо Маркони, которые в своих странах считаются изобретателями радио. Однако Маркони получил большую мировую известность, впервые установив радиосвязь между двумя материками (1901 г.) и получив патент на изобретение (1905 г.). Поэтому считается, что он в развитие радиосвязи внёс наибольший вклад. Но причём тут Тесла?

Радиоволны сегодня повсюду

Как выяснилось, первым природу радиосигналов выявил именно он и в 1897 году запатентовал передатчик и приёмник . Маркони взял за основу технологию Теслы и совершил свою знаменитую демонстрацию в 1901 году. Уже в 1904 году Патентное бюро лишает патента на радио Николу, а через год присуждает его Маркони. Судя по всему, тут не обошлось без финансового влияния Томаса Эдисона и Эндрю Карнеги, которые были в конфронтации с Теслой.

В 1943 году, уже после смерти Николы Теслы, Верховный суд США разобрался в ситуации и признал более значительный вклад этого учёного в качестве изобретателя радиотехнологий.

Отмотаем немного назад. В 1898 году на электротехнической выставке в Мэдисон-Сквер-Гарден Тесла продемонстрировал изобретение, которое он назвал «телеавтоматикой». Фактически это была модель лодки, перемещением которой можно управлять дистанционно через пульт.

Так выглядела радиоуправляемая лодка Теслы

Никола Тесла на деле показал возможности использования технологии передачи радиоволн. Сегодня дистанционное управление сплошь и рядом, начиная от телевизионного пульта и заканчивая полётами беспилотников.

Асинхронный двигатель и электромобиль Теслы

В 1888 году Тесла получил патент на электрическую машину, в которой под воздействием переменного тока создаётся вращение.

Не будем вдаваться в технические особенности работы асинхронного двигателя – те, кому это интересно, могут ознакомиться с соответствующим материалом на Википедии . О чём нужно знать, так это о том, что двигатель имеет простую конструкцию, не требует высоких затрат на изготовление и надёжен в эксплуатации.

Тесла намеревался использовать своё изобретение как альтернативу двигателям внутреннего сгорания . Но так уж случилось, что в этот период никто в подобных инновациях не был заинтересован, да и финансовое положение самого учёного не позволяло ему особо разгуляться.

Интересный факт! В Силиконовой долине великому изобретателю установлен памятник. Символично, что он раздаёт бесплатный Wi-Fi.

Нельзя не упомянуть и об окутанном тайной электромобиле Теслы . Именно из-за сомнительности этой истории не будем выводить её отдельным пунктом. Тем более, что тут не обошлось без электродвигателя.

1931 год, Нью-Йорк. Никола Тесла провёл демонстрацию работы автомобиля, в котором якобы вместо двигателя внутреннего сгорания был установлен двигатель переменного тока мощностью 80 л.с. Учёный колесил на нём около недели, разгоняясь до 150 км/ч. А загвоздка в следующем: двигатель работал без видимого источника питания , да и на подзарядку машина якобы никогда не ставилась. Единственное, к чему мотор был подключён, это коробочка, собранная из лампочек и транзисторов, которые Тесла купил в ближайшем магазине радиоэлектроники.


Для демонстрации был использован автомобиль Pierce Arrow1931 года

На все расспросы Никола отвечал, что энергия берётся из эфира. Газетные скептики начали обвинять его чуть ли не в чёрной магии, и раздосадованный гений, забрав свою коробочку, вообще отказался что-либо комментировать и объяснять.

Подобное событие в биографии Теслы действительно имеет место, но всё же эксперты ставят под сомнение, что он нашёл способ получать энергию для авто из «воздуха». Во-первых, в записях учёного нет и намёка на двигатель, работавший от эфира, а во-вторых, есть предположения, что Никола таким образом одурачил общественность, чтобы привлечь внимание к самой идее электрических автомобилей. А непосредственно для передвижения данного прототипа мог использоваться либо скрытый аккумулятор, либо ДВС с модернизированной системой выхлопа.

Как бы там ни было, сегодня существует компания, в каком-то смысле реализующая эту идею Теслы. Названа она именем изобретателя.

Переменный ток

Так или иначе, перечисленные выше изобретения Николы Теслы связанны с переменным током – типом эклектического тока, способного изменять направление и величину в определённые промежутки времени. Подробнее об отличиях постоянного тока от переменного можете почитать в учебнике по физике.

В нашем случае нужно знать, что при передаче переменного тока от станции к потребителю энергопотери значительно ниже, да и трансформировать его гораздо проще. Таким образом, переменный ток можно назвать более практичным в плане распространения . На этом и настаивал Тесла.

Томас Эдисон как сторонник постоянного тока и как человек, зарабатывающий на этом деньги, всячески очернял идею использования переменного тока. Он говорил об опасности этого решения и даже убивал животных переменным током. Но справедливость восторжествовала, и сегодня по проводам вашего города проходит переменный ток.

Эпилог

Изначально задумывалось, что в этой статье будут кратко освещены важнейшие изобретения Николы Теслы. Но в ходе её написания выяснилось, что весь гений этого человека невозможно раскрыть в двух словах. Тесла действительно имел прогрессивные взгляды и удивлял мир своими открытиями. К сожалению, у него не всегда получалось доносить до общественности значимость его идей, особенно в условиях давления со стороны недоброжелателей.

электромагнитного поля катушки Тесла

Введение………………………………………………………..………...............2 стр.

Теоретическая часть Никола Тесла и его изобретения…………………..…………............5 стр. Схема установки катушки Тесла…………………………..…............8 стр. Практическая часть Социологический опрос среди обучающихся ФСОШ №5…… 8 стр. Сборка катушки Тесла…………….…………….…..…………......9 стр. Расчет основных характеристик изготовленной катушки Тесла 9 стр. Экспериментальные опыты применения катушки Тесла….……11 стр. Современное применение идей Тесла…………………………..13 стр. Фото и видео отчет проведения исследования………………..14 стр.

Заключение………………………………………………….……..................15 стр.

Список литературы……………………………………….……………….…..16 стр.

Приложения………………………………………………….…….……….…..18 стр.

Введение

Я мог бы расколоть земной шар, но никогда

не сделаю этого.

Моей главной целью было указать на новые явления

и распространить идеи, которые и станут

отправными точками для новых исследований.

Никола Тесла

«Я, наконец, преуспел в создании разрядов, мощность которых значительно превосходит силу молний. Вам знакомо выражение «выше головы не прыгнешь»? Это заблуждение. Человек может все». В Международный год света и световых технологий, думаю, стоит вспомнить о легендарной личности Никола Тесла, причем о смысле некоторых его изобретений спорят, и по сей день. О нем сказано много и разного, но люди в большинстве своем, в том числе и я, единодушны в своем мнении – Тесла сделал немало для развития науки и техники для своего времени. Многие его патенты воплотились в жизнь, часть же до сих пор остается за гранью понимания сути. Но основными заслугами Тесла можно считать исследования природы электричества. Особенно высоковольтного. Тесла поражал своих знакомых и коллег удивительными экспериментами, в которых без труда и опаски он управлял высоковольтными генераторами, которые вырабатывали сотни, а иногда и миллионы вольт. Еще в 1900-х годах Тесла мог передавать на огромные расстояния ток без проводов, получить ток 100 млн. ампер и напряжение 10 тыс. вольт. И поддерживать такие характеристики любое необходимое время. Для тех, кто жил рядом с ним, мир менялся, превращался в сказочное пространство, где ничему не стоит удивляться. Вспыхивали северные сияния над всей Атлантикой, обычные бабочки превратились в ярких светлячков, шаровые молнии запросто доставались из чемоданов и использовались для освещения гостиных. Его опыты всегда балансировали на грани зла и добра. Падение тунгусского метеорита, землетрясение в Нью-Йорке, испытания чудовищного оружия, способного мгновенно уничтожать целые армии – вот что еще, кроме светящихся бабочек приписывают экспериментам Тесла. Именно он послужил для многих писателей-фантастов образом безумного профессора, изобретения которого грозят уничтожить всю планету. На самом деле мы ничего не знаем о том, каким человеком был Никола Тесла, каким героем он должен стать для биографов хорошим или плохим.


Экспериментальная физика имеет огромное значение в развитии науки. Лучше один раз увидеть, чем сто раз услышать. Никто не будет спорить с тем, что эксперимент - это мощный импульс к пониманию сущности явлений в природе. Любоваться природой можно, и не зная физики. Но понять ее и увидеть то, что скрыто за внешними образами явлений, можно лишь с помощью точной науки и проведения эксперимента. Сегодня можно с уверенностью сказать, что точным в природе является только свершившийся факт, т. е. опыт или эксперимент, или результаты природного процесса, течение которого не зависит от человека. Непоколебимым остается только результат, полученный посредством того или иного действия. Как уже сказал, это единственное несомненное в гипотезе. Всем известно, что любая гипотеза держится на трех китах: результат эксперимента, его описание и вывод, который опирается на признанные стереотипы (Приложение 1).

Эксперименты с электричеством. Если рассуждать, ну что еще можно открывать и экспериментировать? Ведь сейчас без электричества человечество уже давно не мыслит своего существования. С помощью него работают все бытовые приборы, вся наша промышленность, медицинские приборы. Одно но, сам ток доходит к нам, увы, лишь по проводам. Это все очень далеко от того, что Никола Тесла мог делать более 100 лет назад, и чего современная физика и не может объяснить до сих пор. Современная физика достичь таких показателей просто не в состоянии. Он включал и выключал электродвигатель дистанционно, в его руках сами собой загорались электрические лампочки. Современные ученые достигли лишь планки в 30 миллионов ампер (при взрыве электромагнитной бомбы), и 300 миллионов при термоядерной реакции - да и то, на доли секунды.

Актуальность заключается в том, что в наше время, энтузиасты и ученые мира пытаются повторить опыты гениального ученого и найти их применение. В мистику вдаваться не буду, я попытался сделать кое-что эффектное по «рецептам» Тесла. Это катушка Тесла. Увидев ее один раз, вы никогда не забудете это невероятное и удивительное зрелище.

Объект исследования: катушка Тесла.

Предмет исследования: электромагнитное поле катушки Тесла, высокочастотные разряды в газе.

Цель исследования: изготовить высокочастотную катушку Тесла и на основе собранной действующей установки провести эксперименты.

Объект, предмет и цель исследования обусловили постановку следующей гипотезы: вокруг катушки Тесла образуется электромагнитное поле огромной напряженности, способное передавать электрический ток беспроводным способом.

Изучить литературу по проблеме исследования. Познакомиться с историей изобретения и принципом работы катушки Тесла. Поиск деталей и изготовление катушки Тесла. Провести социологический опрос среди учащихся 7-11 классов «Федоровской СОШ№5». Провести расчеты характеристик катушки Тесла и опыты, демонстрирующие ее работу. Подготовить фото и видеоотчет о проделанной работе для ознакомления учащихся 9-11 классов.

Методы исследования:

Эмпирические: наблюдение высокочастотных электрических разрядов в газовой среде, исследование, эксперимент. Теоретические: конструирование катушки Тесла, анализ литературы, статистическая обработка результатов.

Этапы исследования:


Теоретическая часть. Изучение литературы по проблеме исследования. Практическая часть. Изготовление трансформатора Тесла и демонстрация невероятных свойств электромагнитного поля катушки Тесла

Новизна: заключается в том, что, как и многие изобретатели-экспериментаторы, я

впервые, изучив , собрал катушку Тесла и в рамках проведения Международного года света и световых технологий-2015 провел серию опытов и тем самым, показал значимость трудов Тесла.

Практическая значимость: результат работы носит просветительный характер, это позволит, повысит заинтересованность учеников к углубленному изучению таких предметов, как физика, юных исследователей - к , и возможно для кого-то определит область дальнейшей деятельности.

Теоретическая часть

I.1.Никола Тесла и его изобретения

Что мы знаем о Николе Тесла и его работах? Простому обывателю деятельность Тесла безразлична и неинтересна. В школах и институтах о Тесла упоминается только когда говорят об одноименной единице индуктивности. Так общество "отблагодарило" великого практика за весь вклад, который он внес в развитие электротехники. Вся его деятельность окутана завесой таинственности, а многие просто считают его шарлатаном от науки. Попытаемся рассмотреть значимость «наследия» Тесла.

НИКОЛА ТЕСЛА — изобретатель в области электротехники и радиотехники, инженер, физик. Родился и вырос в Австро-Венгрии, в последующие годы в основном работал во Франции и США.

Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, целью которых было показать наличие эфира как особой формы материи, поддающейся использованию в технике. есла названа плотности магнитного потока. Современники-биографы считали Тесла «человеком, который изобрёл XX век» и «святым заступником» современного электричества. Ранние работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение.

До 1882 года Тесла работал инженером-электриком в правительственной телеграфной компании в Будапеште. В феврале 1882 года Тесла придумал, как можно было бы использовать в электродвигателе явление, позже получившее название вращающегося магнитного поля. В Тесла работал над изготовлением модели асинхронного электродвигателя, а в 1883 году демонстрировал работу двигателя в мэрии Страсбурга.

1884 года Тесла прибыл в Нью-Йорк. Он устроился на работу в компанию Томаса Эдисона в качестве инженера по ремонту электродвигателей и генераторов постоянного тока. Эдисон довольно холодно воспринимал новые идеи Тесла и всё более открыто высказывал неодобрение направлению личных изысканий изобретателя. Весной 1885 года Эдисон пообещал Тесле 50 тыс. долларов, если у него получится конструктивно улучшить электрические машины постоянного тока, придуманные Эдисоном. Никола активно взялся за работу и вскоре представил 24 разновидности машины Эдисона, новый коммутатор и регулятор, значительно улучшающие эксплуатационные характеристики. Одобрив все усовершенствования, в ответ на вопрос о вознаграждении Эдисон отказал Тесле. Оскорблённый Тесла немедленно уволился.

В 1888—1895 годах Тесла занимался исследованиями магнитных полей и высоких частот в своей лаборатории. Эти годы были наиболее плодотворными, именно тогда он запатентовал большинство своих изобретений.

В конце 1896 года Тесла добился передачи радиосигнала на расстояние 48 км.

В Колорадо Спрингс Тесла организовал небольшую лабораторию. Для изучения гроз Тесла сконструировал специальное устройство, представляющее собой трансформатор, один конец первичной обмотки которого был заземлён, а второй соединялся с металлическим шаром на выдвигающемся вверх стержне. К вторичной обмотке подключалось чувствительное самонастраивающееся устройство, соединённое с записывающим прибором. Это устройство позволило Николе Тесле изучать изменения потенциала Земли, в том числе и эффект стоячих электромагнитных волн, вызванный грозовыми разрядами в земной атмосфере. Наблюдения навели изобретателя на мысль о возможности передачи электроэнергии без проводов на большие расстояния.

Следующий эксперимент Тесла направил на исследование возможности самостоятельного создания стоячей электромагнитной волны. На огромное основание трансформатора были намотаны витки первичной обмотки. Вторичная обмотка соединялась с 60-метровой мачтой и заканчивалась медным шаром метрового диаметра. При пропускании через первичную катушку переменного напряжения в несколько тысяч вольт во вторичной катушке возникал ток с напряжением в несколько миллионов вольт и частотой до 150 тысяч герц.

При проведении эксперимента были зафиксированы грозоподобные разряды, исходящие от металлического шара. Длина некоторых разрядов достигала почти 4,5 метров, а гром был слышен на расстоянии до 24 км.

На основании эксперимента Тесла сделал вывод о том, что устройство позволило ему генерировать стоячие волны, которые сферически распространялись от передатчика, а затем с возрастающей интенсивностью сходились в диаметрально противоположной точке земного шара, где-то около островов Амстердам и Сен-Поль в Индийском океане.

В 1917 году Тесла предложил принцип действия устройства для радиообнаружения подводных лодок.

Одним из его самых знаменитых изобретений является Трансформатор (катушка) Тесла.

Трансформатор Тесла, также катушка Тесла — устройство, изобретённое Николой Тесла и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Простейший трансформатор Тесла состоит из двух катушек — первичной и вторичной, а также разрядника, конденсаторов, тороида и терминала.

Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.

Вторичная катушка также образует колебательный контур, где роль конденсатора главным образом выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.

Таким образом, трансформатор Тесла представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов.

После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.

Во всех типах трансформаторов Тесла основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.

I.2. Схема установки катушки Тесла

Резонансный генератор, катушка или трансформатор Тесла – гениальное изобретение великого сербского изобретателя, физика и инженера. Трансформатор состоит из двух катушек, у которых нет общего железного сердечника. На первичной обмотке должно быть не менее десятка витков толстой проволоки. На вторичную наматывают уже как минимум 1000 витков. Учтите, что катушка Тесла обладает таким коэффициентом трансформации, который в 10-50 раз больше, чем отношение количества витков на второй обмотке к первой. На выходе напряжение такого трансформатора может превышать несколько миллионов вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров. Очень важно: и конденсатор, и первичная обмотка обязательно должны, в конечном счете, образовывать специфический колебательный контур, входящий в состояние резонанса с вторичной обмоткой. К Схема установки катушки Тесла предполагает силу тока 5-8 А. Максимальное значение этой величины, которое еще оставляет шанс на выживание, равно 10 А. Так что при работе ни на секунду не забывайте о простейших мерах предосторожности.

В Интернете можно найти разные варианты изготовления источников высокой частоты и напряжения. Мы выбрали одну из схем (Приложение 2), которая состоит из:

Источник питания (220В – 24 В) Переменный резистор Резистор Первичная катушка (9 витков) Вторичная катушка (1000 витков) Транзистор на радиаторе (MJE 13007) Практическая часть

II.1 Социологический опрос среди обучающихся 7-11 классов ФСОШ№5

В опросе приняло участие 325 человек. Были предложены вопросы:

1. Слышали ли Вы об изобретениях Никола Тесла (катушка Тесла)?

2. Хотели бы Вы увидеть серию экспериментов применения катушки Тесла?

После обработки результатов, итог следующий: 176 обучающихся слышали об изобретениях Тесла, 156 учащихся - не слышали. 97 человек видели видео экспериментов по сети Интернет, 228 не имеют представления, как выглядит катушка и ее применение. Все, 325 учащихся хотели бы посмотреть результат исследовательской работы и серию опытов применения катушки Тесла.

II.2 Сборка катушки Тесла

Обратимся к устройству, которое сейчас известно, как трансформатор (катушка) Тесла. Во всем мире "тесластроители" ежегодно воспроизводят его многочисленные модификации. Основной целью у большинства таких радиолюбителей Тесла, является получение световых и звуковых эффектов, достигаемых в экспериментах с высоким напряжением, которое присутствует на выходе высоковольтной катушки трансформатора Тесла (ТТ). Многих также привлекают идеи Тесла по генерации энергии большой мощности, а еще более привлекательным, является попытка создания "сверхединичного" (СЕ) устройства на основе ТТ. Эта сфера альтернативной науки.

Установку я собирал сам на основе схемы (Приложение 2, Рис.1, 2, 3, 4, 5). Катушка, намотанная на каркасе от пластмассовой (сантехнической) трубы с диаметром 5 см. Первичная обмотка содержит всего 9 витков, провод диаметром 1,5 мм, был использован одножильный медный провод в резиновой изоляции. Вторичная обмотка содержит 1000 витков провода 0,1 мм. Вторичная обмотка мотается аккуратно, виток к витку. Это устройство производит высокое напряжение при высокой частоте. Катушка Теслы - это демонстрационный генератор высокочастотных токов высокого напряжения. Устройство может быть использовано для беспроводной передачи электрического тока, на большие расстояния. В ходе исследования я продемонстрирую действие изготовленной мною катушки Тесла (Приложение 3, Рис.6).

II.3 Расчет основных характеристик изготовленной катушки Тесла

    ЭДС: 24 В. Два аккумулятора от шуруповёрта по 12 В каждый. Сопротивление: R=50075 Ом. R= R1+ R2 (последовательное соединение) Внутренним сопротивлением источника, проводов, обмоток посчитано необходимым, пренебречь. 1)Переменный резистор (Реостат) 50 КОм. 2)Резистор 75 Ом. Сила тока: 0,5 мА. Рассчитано из закона Ома для полной цепи I= ЭДС/ R+r

и проверено амперметром.

    Частота колебаний: 200 МГц. Расчеты произведены при помощи CircutLab.

    Входное напряжение: 24 В. Выходное напряжение: ~2666,7 В. Коэффициент трансформации – это величина, равная отношению напряжений в первичной и вторичной обмотках трансформатора.

K=U1/U2=N1/N2, где

N1 - число витков на первичной обмотке трансформатора

N2- число витков на вторичной обмотке трансформатора

при условии K < 1, U2 > U1, N2> N1 – повышающий трансформатор

при условии K >1, U1> U2, N1> N2 – понижающий трансформатор

K=U1/U2 =24/2667=0,009 < 1 повышающий трансформатор

K= N1/N2 =9/1000=0,009 < 1 повышающий трансформатор

Построим график зависимости выходного напряжения от числа витков вторичной катушки (Приложение 4). Из диаграммы видно, чем больше число витков на вторичной обмотке, тем больше выходное напряжение катушки.

ВЫВОД: разряды катушки не являются опасными для человеческого организма при кратковременном воздействии, так как сила тока ничтожно мала, а частота и напряжение слишком высоки.

II.4 Экспериментальные опыты применения катушки Тесла

С готовой катушкой Тесла можно провести ряд интересных опытов, соблюдая правила безопасности. Для проведения опытов у вас должна быть очень надежная проводка, иначе беды не избежать. К выходной катушке высокого напряжения можно даже прикоснуться куском металла. Почему при прикосновении к источнику напряжения 250000 В высокой частоты 500 кГц с экспериментатором ничего не случается? Ответ прост. Николой Тесла была открыта и эта «страшная» тайна – токи высоких частот при высоких напряжениях безопасны.

Во время работы катушка Тесла создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают катушки Тесла ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Тесла производит несколько видов разрядов:

    Спарк — это искровой разряд. Также имеет место особый вид искрового разряда — скользящий искровой разряд. Стримеры — тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Протекает от терминала катушки прямо в воздух, не уходя в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора. Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности. Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга

Интересно заметить, что некоторые ионные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, ионы натрия меняют обычный окрас спарка на оранжевый, а бора — на зелёный, марганца – на синий, лития – на малиновый окрас.

Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление это связано с превращением стримеров в искровые каналы, который сопровождается резким возрастанием силы тока и энергии, выделяющейся в них.

С помощью изготовленной катушки Тесла демонстрирую множество красивых и эффектных экспериментов. Демонстрации с использованием трансформатора. Пронаблюдаем разряды.

Демонстрация №1. Демонстрация газовых разрядов. Стример, спарк, дуговой разряд.

Оборудование: катушка (трансформатор) Тесла, отвертка.

При включении катушки, с терминала начинает выходить разряд, который в длину 6-7 мм. (Приложение 5, Рис.7, 8).

Демонстрация №2. Демонстрация тлеющего разряда. Свечение спектральных трубок, наполненных инертными газами: гелием, неоном.

Оборудование: катушка (трансформатор) Тесла, набор спектральных трубок.

При поднесении этих ламп к катушке Тесла, мы будем наблюдать, как газ, которыми наполнены трубки, будет светиться (Приложение 6, Рис.9, 10,11).

Демонстрация №3. Демонстрация разряда в люминесцентной лампе и лампе дневного света (ЛДС).

Оборудование: катушка (трансформатор) Тесла, люминесцентная лампа, лампа дневного света.

Наблюдается разряд в люминесцентной лампе (Приложение 7, Рис.12, 13).

Демонстрация №4. Эксперимент с линейками.

Оборудование: катушка (трансформатор) Тесла, металлическая линейка, деревянная линейка.

При внесении металлической линейки в разряд стример ударяется об нее, при этом линейка остается холодной. При внесении деревянной линейки в разряд, стример быстро охватывает ее поверхность и через несколько секунд линейка загорается (Приложение 8, Рис.14, 15, 16).

Демонстрация №5. Эксперимент с бумагой.

Оборудование: катушка (трансформатор) Тесла, бумага.

При внесении бумаги в разряд, стример быстро охватывает ее поверхность и через несколько секунд бумага вспыхивает (Приложение 9, Рис.17).

Демонстрация №6. Эксперимент с венчиком.

Разветвляем жилы, заранее припаиваем к терминалу (Приложение 10, рис.18).

Демонстрация №7. Дерево из плазмы.

Оборудование: катушка (трансформатор) Тесла, тонкий многожильный провод.

Разветвляем жилы, у заранее зачищенного от изоляции провода, и прикручиваем к терминалу (Приложение 11, Рис.19,20, 21, 22).

Демонстрация №8. Ионный мотор.

Оборудование: катушка (трансформатор) Тесла, пластина-крест.

К терминалу трансформатора прикручиваем иглу, сверху по центру устанавливаем пластину-крест. После включения катушки из 4 концов креста начинают выходить стримеры и под их действием пластина начинает вращаться (Приложение 12, Рис.23).

II.5 Современное применение идей Тесла

Переменный ток является основным способом передачи электроэнергии на большие расстояния.

    Электрогенераторы являются основными элементами в генерации электроэнергии на ГЭС, ТЭС и т. д. Электродвигатели, впервые созданные Николой Тесла, используются во всех современных станках, электропоездах, электромобилях, трамваях, троллейбусах. Радиоуправляемая робототехника получила широкое распространение не только в детских игрушках и беспроводных телевизионных и компьютерных устройствах (пульты управления), но и в военной сфере, в гражданской сфере, в вопросах военной, гражданской и внутренней, а также и внешней безопасности стран и т. п. Беспроводные заряжающие устройства начинают использоваться для зарядки мобильных телефонов или ноутбуков.
    Переменный ток, впервые полученный Тесла, является основным способом передачи электроэнергии на большие расстояния
    Оригинальные современные противоугонные средства для автомобилей работают по принципу все тех же катушек. Использование в развлекательных целях и шоу. Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов, беспроводной передачи данных и беспроводной передачи энергии. В фильмах эпизоды строятся на демонстрации трансформатора Тесла, в компьютерных играх. В начале XX века трансформатор Тесла также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам, оказывая при этом «тонизирующее» и «оздоравливающее» влияние. Он используется для поджига газоразрядных ламп и для поиска течей в системах. Основное его применение в наши дни — познавательно-эстетическое. В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Вывод: неверно считать, что катушка Тесла не имеет широкого практического применения. Перечисленные мною выше примеры ярко об этом свидетельствуют. Тем не менее, основное его применение в наши дни — познавательно-эстетическое (Приложение 13, Рис.24).

II.6. Фото и видео отчет проведения исследования

В приложении фото отчет, видео отчет прилагается к работе на электронном носителе. Буклет-памятка «Современное применение идей Тесла» (Приложение 14).

Заключение

Одной из самых ярких, интересных и неординарных личностей среди ученых-физиков является Никола Тесла. Почему-то его несильно жалуют на страницах школьных учебников физики, хотя без его трудов, открытий и изобретений трудно представить себе существование обыденных, казалось бы, вещей, таких как, например, наличие электротока в наших розетках. Подобно Ломоносову, Никола Тесла опередил своё время и не получил заслуженного признания при жизни, впрочем, и поныне его труды не оценены по достоинству.

Тесла удалось соединить в одном приборе свойства трансформатора и явление резонанса. Так был создан знаменитый резонанс-трансформатор, сыгравший огромную роль в развитии многих отраслей электротехники, радиотехники и широко известный под названием "трансформатора Тесла".

Трансформатор (катушка) Тесла - удивительное устройство, позволяющее получить мощный интенсивный поток автоэлектронной эмиссии чрезвычайно экономичным способом. Однако его уникальные свойства и полезные применения далеко еще не исчерпаны.

Бесспорно, Никола Тесла является интересной фигурой с точки зрения на перспективу использования на практике его нетрадиционных идей. Сербскому гению удалось оставить заметный след в истории науки и техники.

Его инженерные разработки нашли применение в области , электротехники, кибернетики, медицине. Деятельность изобретателя окутана мистическими рассказами, среди которых надо выбрать именно те, в которых содержится правдивая информация, действительные исторические факты, научные достижения и конкретные результаты.

Вопросы, которыми занимался Никола Тесла, остаются актуальными и сегодня. Их рассмотрение позволяет творческим инженерам и студентам физических специальностей шире смотреть на проблемы современной науки, отказаться от шаблонов, научиться отличать правду от вымысла, обобщать и структурировать материал. Поэтому взгляды Н. Тесла можно считать актуальными ныне не только для исследований в области истории науки и техники, но как достаточно действенной средство поисковых работ, изобретение процессов и использования новейших технологий.

В результате моих исследований гипотеза подтвердилась: вокруг катушки Тесла образуется электромагнитное поле огромной напряженности, способное передавать электрический ток беспроводным способом:

    лампочки, наполненные инертным газом светятся вблизи катушки, следовательно, вокруг установки действительно существует электромагнитное поле высокой напряженности; лампочки загорались сами по себе у меня в руках на определенном расстоянии, значит, электрический ток может передаваться без проводов.

Необходимо отметить и еще одну важную вещь: действие этой установки на человека: как Вы заметили при работе меня не било током: токи высокой частоты, которые проходят по поверхности человеческого организма не причиняют ему вреда, наоборот, оказывают тонизирующее и оздоровительное действие, это используется даже в современной медицине (из научно-популярной литературы). Однако надо заметить, что электрические разряды, которые Вы видели, имеют высокую температуру, поэтому долго ловить молнию руками не рекомендуется!

Никола Тесла заложил основы новой цивилизации третьего тысячелетия и его роль нуждается в переоценке. Только будущее даст настоящее объяснение явлению Теслы.

Здравствуйте. Сегодня я расскажу про миниатюрную катушку (трансформатор) Тесла.
Сразу скажу, что игрушка крайне интересная. Я сам вынашивал планы по её сборке, но оказывается это дело уже поставлено на поток.
В обзоре тестирование, различные опыты-эксперименты, а также небольшая доработка.
Так что прошу…

Насчет Николы Теслы существуют разные мнения. Для кого-то это чуть ли не бог электричества, покоритель свободной энергии и изобретатель вечного двигателя. Другие же считают его великим мистификатором, умелым иллюзионистом и любителем сенсаций. И ту, и другую позицию можно подвергнуть сомнению, однако отрицать огромный вклад Теслы в науку никак нельзя. Ведь он изобрёл такие вещи, без которых невозможно представить себе наше сегодняшнее существование, например: переменный ток, генератор переменного тока, асинхронный электродвигатель, радио (да, да именно Н.Тесла первый изобрёл радио, а не Попов и Маркони), дистанционное управление и др.
Одним из его изобретений был резонансный трансформатор, производящий высокое напряжение высокой частоты. Этот трансформатор носит имя создателя - Николы Теслы.
Простейший трансформатор Тесла состоит из двух катушек - первичной и вторичной, а также электрической схемы, создающей высокочастотные колебания.
Первичная катушка обычно содержит несколько витков провода большого диаметра или медной трубки, а вторичная около 1000 витков провода меньшего диаметра. В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником.
В оригинале в схеме генератора использовался газовый разрядник. Сейчас чаще всего используют так называемый качер Бровина.
Качер Бровина - разновидность генератора на одном транзисторе, якобы работающего в нештатном для обычных транзисторов режиме, и демонстрирующая таинственные свойства, восходящие к исследованиям Тесла и не вписывающиеся в современные теории электромагнетизма.
По видимому, качер представляет собой полупроводниковый разрядник (по аналогии с разрядником Теслы), в котором электрический разряд тока проходит в кристалле транзистора без образования плазмы (электрической дуги). При этом кристалл транзистора после его пробоя полностью восстанавливается (т.к. это обратимый лавинный пробой, в отличие от необратимого для полупроводника теплового пробоя). Но в доказательство этого режима работы транзистора в качере приводятся лишь косвенные утверждения: никто кроме самого Бровина работу транзистора в качере детально не исследовал, и это только его предположения. Например, в качестве подтверждения «качерного» режима Бровин приводит следующий факт: какой полярностью к качеру не подключай осциллограф, полярность импульсов, которые он показывает, всё равно положительная

Хватит слов, пора переходить к герою обзора.

Упаковка самая аскетическая - вспененный полиэтилен и скотч. Фото не делал, но процесс распаковки есть в видеоролике в конце обзора.

Комплектация:

Комплект состоит из:
- блока питания на 24В 2А;
- переходника на евровилку;
- 2-х неоновых лампочек;
- катушки (трансформатора) Тесла с генератором.



Трансформатор Тесла:

Размеры всего изделия весьма скромные: 50х50х70 мм.






От оригинальной катушки Тесла есть несколько отличий: первичная (с малым количеством витков) обмотка должна находится снаружи вторичной, а не наоборот, как здесь. Также вторичная обмотка должна содержать достаточно большое количество витков, как минимум 1000, здесь же всего витков около 250.
Схема достаточно простая: резистор, конденсатор, светодиод, транзистор и сам трансформатор Тесла.
Это и есть слегка модифицированный качер Бровина. В оригинале у качера Бровина установлено 2 резистора от базы транзистора. Здесь один из резисторов заменён на светодиод включенный в обратном смещении.

Тестирование:

Включаем и наблюдаем свечение высоковольтного разряда на свободном контакте катушки Тесла.
Также можем видеть свечение неоновых ламп из комплекта, и газоразрядной «энергосберегайки». Да, для тех, кто не в курсе, лампы светятся просто так, без подключения к чему либо, просто вблизи катушки.


Свечение можно наблюдать даже у неисправной лампы накаливания
Правда в процессе экспериментирования, колба лампы лопнула.
Высоковольтный разряд без труда поджигает спичку:
Спичка легко поджигается и с обратной стороны:

Для снятия осциллограммы тока потребления, я в разрыв цепи питания установил 2-х ваттный резистор сопротивлением 4,7 Ом. Вот что получилось:

На первом скриншоте трансформатор работает без нагрузки, на втором поднесена энергосберегающая лампа. Видно, что общий ток потребления не меняется, что не скажешь о частоте колебаний.
Маркером V2 я отметил нулевой потенциал и среднюю точку переменной составляющей, итого получилось 1,7 вольта на резисторе 4,7 Ом, т.е. средний ток потребления составляет
0,36А. А потребляемая мощность около 8,5Вт.

Доработка:

Явный недостаток конструкции - очень маленький радиатор. Несколько минут работы прибора достаточно, чтобы нагреть радиатор до 90 градусов.
Для улучшения ситуации был применён бОльший радиатор от видеокарты. Транзистор был перемещён вниз, а светодиод наверх платы.
С этим радиатором максимальная температура упала до 60-65 градусов.

Видеоверсия обзора:

Видеоверсия содержит распаковку, опыты с разными лампами, поджигание спичек, бумаги, прожигание стекла, а также «электронные качели». Приятного просмотра.

Итоги:

Начну с минусов: неверно выбран размер радиатора - он слишком мал, поэтому включать трансформатор можно буквально на несколько минут, иначе можно сжечь транзистор. Либо нужно сразу увеличить радиатор.
Плюсы: всё остальное, одни сплошные плюсы, от «Вау»-эффекта, до пробуждения интереса к физике у детей.
К покупке рекомендую однозначно.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Резонансный генератор, катушка или трансформатор Теслы - гениальное изобретение великого хорватского изобретателя, физика и инженера. В статье будет рассмотрен один из простых вариантов реализации проекта - трансформатор Тесла.
В конструкции не использован МОТ трансформатор (почти во всех схемах трансформатора Теслы, именно МОТ служит источником питания), пришлось также создать отдельную схему преобразователя, но обо всем по порядку.

Основные части:
1) Блок питания
2) Преобразователь напряжения и высоковольтная цепь

Блок питания

Для питания такой схемы нужен достаточно мощный блок питания. К счастью, уже имелся готовый блок питания на 500 Ватт. Напряжение на вторичной обмотке трансформатора 14 Вольт, при токе в 20 Ампер. Для запитки устройства не желательно использовать импульсные источники питания.

Диодный выпрямитель использован готовый, хотя можно собрать мост из мощных отечественных диодов серии КД2010, укрепленных на теплоотвод. Для сглаживания помех использован конденсатор на 25 Вольт 2200 микрофарад (этого хватит, поскольку на схеме преобразователя уже есть конденсатор на 4700 микрофарад и дроссель для сглаживания высокочастотных помех). Подойдут похожие трансформаторы от 300 до 600-700 Ватт.

Преобразователь и высоковольтная цепь

Увидев схему преобразователя, многие зададут себе вопрос - зачем умощнять однотактный преобразователь, если можно сделать двухтактный? Вопрос конечно к месту, если бы не одно но! Дело в том, что в интернете нигде ранее не опубликованы варианты умощнения обратноходовых преобразователей, вот и было решено совместить этот вариант и найти устройству практическое применение. В итоге был собран высококачественный преобразователь с мощностью порядка 180-200 ватт и более.
Сердцем преобразователя является генератор импульсов, построенный на ШИМ контролере серииUC3845, ранее уже были предложены версии преобразователей на этой микросхеме (), но как правило стандартная схема обладала мощностью 80 ватт на пиках, и вот после недолгих экспериментов, был разработан нижеприведенный вариант.

Предварительно сигнал от микросхемы усиливается каскадом на комплементарной паре, которая построена на отечественных транзисторах серии КТ 816/817, это необходимо, поскольку начальный уровень сигнала иногда недостаточен для срабатывания полевых транзисторов. В схеме использовались три полевика серии IRL3705, при таком мощном источнике, на транзисторах рассеивается большая мощность, поэтому их нужно укрепить на теплоотводы и дополнить кулерами от компьютерных блоков питания. Частота работы преобразователя 60 килогерц, его можно изменить играя с емкостью конденсатора 4.7нФ и подбором сопротивления резистора 6.8 кОм на схеме, уменьшая емкость и увеличивая сопротивление резистора, можно увеличить частоту преобразователя, при обратном процессе, частота работы преобразователь уменьшается.

В качестве повышающего трансформатора удобно использовать трансформатор строчной развертки от отечественных телевизоров, для получения максимальной мощности желательно использовать два строчника, высоковольтные обмотки которых, нужно соединить последовательно.

Первичная обмотка мотается на свободной стороне П-образного феррита и содержит 4-5 витков провода 3мм, для удобства намотки можно использовать несколько жил, или же многожильный провод в силиконовой или резиновой изоляции, как в данном случае. Использовать самодельные трансформаторы не желательно, поскольку они редко способны выдержать такую мощность.
Дуга на выходе высоковольтной обмотки трансформатора имеет достаточно большую силу тока, поэтому для его выпрямления использовались 4 диода серии КЦ106.

Предварительно, диоды по 2 штуки соединены параллельно, затем блоки из двух параллельно соединенных диодов соединены последовательным образом.

В накопительной части использован конденсатор на 5 киловольт с емкостью 1 микрофарад, можно использовать также блок конденсаторов, емкость и напряжение не критично и можно отклонится от указанного номинала на 10 - 15%

Искровый разрядник, или просто искровик - предназначен для разряжения емкости конденсатора на первичную обмотку катушки, его можно сделать из двух болтов, или же применить готовых вакуумный разрядник фирмы ЭПОКС с напряжением пробоя 3 – 3.5 кВ на 5 -10 ампер. Самодельный искровик из болтов удобен тем, что зазор, а следовательно и частоту разрядов можно регулировать.

Катушка намотана на каркасе от канализационной трубы с диаметром 12 см, высота 50 - 65 см, подойдут также близкие по параметрам пластмассовые трубы. ВАЖНО! Не использовать трубы из металлопластмассы. Первичная обмотка содержит всего 5 витков, провод с диаметром 3-5 мм, был использован одножильный алюминиевый провод в резиновой изоляции. Расстояние между витками 2 см.

Вторичная обмотка содержит 700-900 витков провода 0.5-0.7 мм. Вторичная обмотка мотается аккуратно, виток к витку, при ручной намотке процесс отнимает 5 часов, поэтому удобно использовать намоточный станок (хотя в моем случае катушка моталась вручную). При передышке, нужно приклеить последний виток к каркасу.

Возможности

Катушка Теслы - это демонстрационный генератор высокочастотных токов высокого напряжения. Устройство может быть использовано для беспроводной передачи электрического тока, на большие расстояния. В дальнейшем устройство будет переделано, в частности будет перемотан, точнее изменен первичный контур, если есть возможность желательно использовать медную трубу, таким образом мощность катушки резко возрастет.

Опыты с катушкой теслы

С готовой катушкой можно провести ряд интересных опытов, конечно при этом нужно соблюдать все правила безопасности.

Опыт 1. Нужен медный провод с диаметром 0.2 – 0.8 мм, который нужно намотать на каркас от широкого прозрачного скотча, или же на литровую банку. Контур содержит 15-20 витков, после чего каркас вынимаем, а витки контура закрепляем друг к другу при помощи ниток или скотча. Затем берите обычный светодиод (желательно белый или синий) и выводы светодиода припаяйте к контуру. Включите трансформатор. Контур со светодиодом отдалите от включенного трансформатора на пару метров. Можно наблюдать за свечением светодиода, без какой-либо проводной связи с источником питания. Это основной опыт, который демонстрирует возможности трансформатора Теслы.

Опыт 2. Свечение ламп дневного света на расстоянии. Это один из наиболее распространенных опытов с катушкой Теслы. Все виды подобных ламп, светятся на небольшом расстоянии от включенного трансформатора.

Правила безопасности

Трансформатор Теслы - высоковольтный генератор, нужно помнить, что на выходе устройства и в высоковольтной цепи образуется смертельно опасное напряжение (особенно на высоковольтном конденсаторе). При ведении монтажных работ, нужно заранее убедится, что контурный конденсатор полностью разряжен, использовать толстые резиновые перчатки, и не приближаться к включенному устройству. Все опыты делать вдали от цифровых устройств, высоковольтные разряды могут повредить электронику! Запомните это не качер! Играть с дугой строго запрещено! Особо опасна высоковольтная часть и высоковольтная обмотка преобразователя.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Преобразователь
ШИМ контроллер

UC3845

1 В блокнот
Биполярный транзистор

КТ817А

1 В блокнот
Биполярный транзистор

КТ816А

1 В блокнот
MOSFET-транзистор

IRF3205

2 В блокнот
Выпрямительный диод

UF4007

1 В блокнот
10 мкФ 3 В блокнот
4.7 нФ 1 В блокнот
Электролитический конденсатор 4700 мкФ 1 В блокнот
Резистор

6.8 кОм

1 В блокнот
Резистор

5.1 кОм

1 В блокнот
Резистор

820 Ом

1 В блокнот
Резистор

5 Ом

2 В блокнот
DR Катушка индуктивности 1
Похожие публикации