Что такое криптографическая защита. Криптографические средства

Изучая криптовалюты, однажды вы неизбежно наткнётесь на термин «криптография». В интересующей нас сфере криптография имеет множество функций. В их числе - защита данных, использование в составлении паролей, оптимизация банковской системы и т.д. В этой статье мы познакомим вас с основами криптографии и обсудим её значение для криптовалют.

История криптографии

Криптография - это метод безопасного сокрытия информации. Чтобы раскрыть информацию, читателю необходимо знать, каким образом информация была изменена или зашифрована. Если сообщение было качественно зашифровано, прочитать его смогут только отправитель и получатель.

Криптография отнюдь не нова, она существует уже тысячи лет. Исторически криптография использовалась для отправки важных сообщений, чтобы скрыть их от лишних глаз. Первые криптографические сообщения были найдены у древних египтян, однако подтверждённое использование шифров в стратегических целях относится к эпохе Древнего Рима.

По словам историков, Юлий Цезарь использовал криптографию и даже создал так называемый шифр Цезаря, чтобы отправлять секретные сообщения высокопоставленным генералам. Этот метод защиты конфиденциальной информации от нежелательных глаз использовался вплоть до новейшей истории.

Во время Второй мировой войны немцы использовали машину шифрования «Энигма», чтобы передавать важную информацию. Алан Тьюринг, математический человек и гений, в чью честь впоследствии был назван тест Тьюринга, нашёл способ её взломать. Сейчас взлом «Энигмы» считают одним из основных переломных моментов во Второй мировой.

Основы криптографии

Вышеупомянутый шифр Цезаря - один из простейших способов шифрования сообщений, полезный для понимания криптографии. Его также называют шифром сдвига, поскольку он заменяет исходные буквы сообщения другими буквами, находящимися в определённой позиции по отношению к первичной букве в алфавите.

Например, если мы зашифруем сообщение через шифр +3 на английском языке, то A станет D, а K станет N. Если же использовать правило -2, то D станет B, а Z станет X.

read everything on invest in blockchain

Это самый простой пример использования криптографии, однако на похожей логике строится и любой другой метод. Существует сообщение, которое секретно для всех, кроме заинтересованных сторон, и процесс, направленный на то, чтобы сделать это сообщение нечитаемым для всех, кроме отправителя и получателя. Этот процесс называется шифрованием и состоит из двух элементов:

Шифр - это набор правил, которые вы используете для кодирования информации. Например, сдвиг на X букв в алфавите в примере с шифром Цезаря. Шифр не обязательно должен быть засекречен, потому что сообщение можно будет прочитать только при наличии ключа.

Ключ - значение, описывающее, каким именно образом использовать набор правил шифрования. Для шифра Цезаря это будет число букв для сдвига в алфавитном порядке, например +3 или -2. Ключ - это инструмент для дешифровки сообщения.

Таким образом, многие люди могут иметь доступ к одному и тому же шифру, но без ключа они всё равно не смогут его взломать.

Процесс передачи секретного сообщения идёт следующим образом:

  • сторона A хочет отправить сообщение стороне B, но при этом ей важно, чтобы никто другой его не прочитал;
  • сторона A использует ключ для преобразования текста в зашифрованное сообщение;
  • сторона B получает зашифрованный текст;
  • сторона B использует тот же ключ для расшифровки зашифрованного текста и теперь может читать сообщение.

Эволюция криптографии

Сообщения шифруются для защиты их содержимого. Это подразумевает, что всегда будут стороны, заинтересованные в получении данной информации. Поскольку люди так или иначе достигают успехов в расшифровке различных кодов, криптография вынуждена адаптироваться. Современная криптография далеко ушла от обычного смещения букв в алфавите, предлагая сложнейшие головоломки, которые решать с каждым годом всё труднее. Вместо банального смещения буквы теперь могут заменяться на числа, другие буквы и различные символы, проходя через сотни и тысячи промежуточных шагов.

Цифровая эпоха привела к экспоненциальному увеличению сложности шифрования. Это связано с тем, что компьютеры принесли с собой резкое увеличение вычислительной мощности. Человеческий мозг по-прежнему остаётся самой сложной информационной системой, но, когда дело доходит до выполнения вычислений, компьютеры намного быстрее и могут обрабатывать гораздо больше информации.

Криптография цифровой эры связана с электротехникой, информатикой и математикой. В настоящее время сообщения обычно шифруются и дешифруются с использованием сложных алгоритмов, созданных с использованием комбинаций этих технологий. Однако, независимо от того, насколько сильным будет шифрование, всегда будут люди, работающие над его взломом.

Взлом кода

Вы можете заметить, что даже без ключа шифр Цезаря не так сложно взломать. Каждая буква может принимать только 25 разных значений, а для большинства значений сообщение не имеет смысла. С помощью проб и ошибок вы сможете расшифровать сообщение без особых усилий.

Взлом шифрования с использованием всех возможных вариаций называют брутфорсом (bruteforce, англ. - грубая сила). Такой взлом предполагает подбор всех возможных элементов до тех пор, пока решение не будет найдено. С увеличением вычислительных мощностей брутфорс становится всё более реалистичной угрозой, единственный способ защиты от которой - увеличение сложности шифрования. Чем больше возможных ключей, тем сложнее получить доступ к вашим данным «грубой силой».

Современные шифры позволяют использовать триллионы возможных ключей, делая брутфорс менее опасным. Тем не менее утверждается, что суперкомпьютеры и в особенности квантовые компьютеры вскоре смогут взломать большинство шифров посредством брутфорса из-за своих непревзойдённых вычислительных мощностей.

Как уже говорилось, расшифровка сообщений со временем становится всё труднее. Но нет ничего невозможного. Любой шифр неотъемлемо связан с набором правил, а правила в свою очередь могут быть проанализированы. Анализом правил занимается более тонкий метод дешифровки сообщений - частотный анализ.

С колоссальным усложнением шифров в наши дни эффективный частотный анализ можно осуществить только с использованием компьютеров, но это всё ещё возможно. Этот метод анализирует повторяющиеся события и пытается найти ключ, используя эту информацию.

Давайте снова рассмотрим пример шифра Цезаря, чтобы разобраться. Мы знаем, что буква E используется гораздо чаще, чем другие буквы в латинском алфавите. Когда мы применяем это знание к зашифрованному сообщению, мы начинаем искать букву, которая повторяется чаще всего. Мы находим, что буква H используется чаще других, и проверяем наше предположение, применяя к сообщению сдвиг -3. Чем длиннее сообщение, тем легче применить к нему частотный анализ.

uh

Криптография и криптовалюты

Большинство криптовалют служат совершенно другим целям, нежели отправка секретных сообщений, но, несмотря на это, криптография играет здесь ключевую роль. Оказалось, что традиционные принципы криптографии и используемые для неё инструменты имеют больше функций, чем мы привыкли считать.

Наиболее важные новые функции криптографии - это хеширование и цифровые подписи.

Хеширование

Хеширование - это криптографический метод преобразования больших объёмов данных в короткие значения, которые трудно подделать. Это ключевой компонент технологии блокчейн, касающийся защиты и целостности данных, протекающих через систему.

Этот метод в основном используется для четырёх процессов:

  • верификация и подтверждение остатков в кошельках пользователей;
  • кодирование адресов кошельков;
  • кодирование транзакций между кошельками;
  • майнинг блоков (для криптовалют, предполагающих такую возможность) путём создания математических головоломок, которые необходимо решить, чтобы добыть блок.

Цифровые подписи

Цифровая подпись в некотором смысле представляет собой аналог вашей реальной подписи и служит для подтверждения вашей личности в сети. Когда речь заходит о криптовалютах, цифровые подписи представляют математические функции, которые сопоставляются с определённым кошельком.

Таким образом, цифровые подписи - это своего рода способ цифровой идентификации кошелька. Прилагая цифровую подпись к транзакции, владелец кошелька доказывает всем участникам сети, что сделка исходила именно от него, а не от кого-либо другого.

Цифровые подписи используют криптографию для идентификации кошелька и тайно связаны с общедоступным и приватным ключами кошелька. Ваш общедоступный ключ - это аналог вашего банковского счёта, в то время как приватный ключ - ваш пин-код. Не имеет значения, кто знает номер вашего банковского счета, потому что единственное, что с ним смогут сделать, - это внести деньги на ваш счёт. Однако, если они знают ваш пин-код, у вас могут возникнуть реальные проблемы.

В блокчейне приватные ключи используются для шифрования транзакции, а открытый ключ - для дешифровки. Это становится возможным, потому что отправляющая сторона отвечает за транзакцию. Передающая сторона шифрует транзакцию своим приватным ключом, но её можно дешифровать с помощью открытого ключа получателя, потому что единственное назначение этого процесса заключается в верификации отправителя. Если открытый ключ не срабатывает при дешифровке транзакции, она не выполняется.

В такой системе открытый ключ распространяется свободно и тайно соотносится с приватным ключом. Проблемы нет, если открытый ключ известен, но приватный ключ всегда должен находиться в тайне. Несмотря на соотношение двух ключей, вычисление приватного ключа требует невероятных вычислительных мощностей, что делает взлом финансово и технически невозможным.

Необходимость защиты ключа - основной недостаток этой системы. Если кому-то станет известен ваш приватный ключ, он сможет получить доступ к вашему кошельку и совершать с ним любые транзакции, что уже происходило с Bloomberg, когда один из ключей сотрудников был показан по телевизору.

Заключение

Криптография в блокчейне имеет множество разных уровней. В этой статье рассматриваются только основы и общие принципы использования криптографии, однако этот вопрос куда глубже, чем может показаться на первый взгляд.

Важно понимать взаимосвязь между криптографией и технологией блокчейн. Криптография позволяет создать систему, в которой сторонам не нужно доверять друг другу, так как они могут положиться на используемые криптографические методы.

С момента своего появления в 2009 году криптографическая защита блокчейна биткоина выдержала все попытки подделки данных, а их было бесчисленное множество. Новые криптовалюты реализуют ещё более безопасные методы криптографии, некоторые из которых даже защищены от брутфорса квантовых процессоров, то есть предупреждают угрозы будущего.

Без криптографии не могло быть биткоина и криптовалют в целом. Удивительно, но этот научный метод, изобретённый тысячи лет назад, сегодня держит наши цифровые активы в целости и сохранности.

Механизмами шифрования данных для обеспечения информационной безопасности общества является криптографическая защита информации посредством криптографического шифрования.

Криптографические методы защиты информации применяются для обработки, хранения и передачи информации на носителях и по сетям связи.

Криптографическая защита информации при передаче данных на большие расстояния является единственно надежным способом шифрования.

Криптография - это наука, которая изучает и описывает модель информационной безопасности данных. Криптография открывает решения многих проблем информационной безопасности сети: аутентификация, конфиденциальность, целостность и контроль взаимодействующих участников.

Термин "Шифрование" означает преобразование данных в форму, не читабельную для человека и программных комплексов без ключа шифрования-расшифровки. Криптографические методы защиты информации дают средства информационной безопасности, поэтому она является частью концепции информационной безопасности.

Цели защиты информации в итоге сводятся к обеспечению конфиденциальности информации и защите информации в компьютерных системах в процессе передачи информации по сети между пользователями системы.

Защита конфиденциальной информации, основанная на криптографической защите информации, шифрует данные при помощи семейства обратимых преобразований, каждое из которых описывается параметром, именуемым "ключом" и порядком, определяющим очередность применения каждого преобразования.

Важнейшим компонентом криптографического метода защиты информации является ключ, который отвечает за выбор преобразования и порядок его выполнения. Ключ - это некоторая последовательность символов, настраивающая шифрующий и дешифрующий алгоритм системы криптографической защиты информации. Каждое такое преобразование однозначно определяется ключом, который определяет криптографический алгоритм, обеспечивающий защиту информации и информационную безопасность информационной системы.

Один и тот же алгоритм криптографической защиты информации может работать в разных режимах, каждый из которых обладает определенными преимуществами и недостатками, влияющими на надежность информационной безопасности России и средства информационной безопасности.

Симметричная или секретная методология криптографии.

В этой методологии технические средства защиты информации, шифрования и расшифровки получателем и отправителем используется один и тот же ключ, оговоренный ранее еще перед использованием криптографической инженерной защиты информации.

В случае, когда ключ не был скомпрометирован, в процессе расшифровке будет автоматически выполнена аутентификация автора сообщения, так как только он имеет ключ к расшифровке сообщения.

Таким образом, программы для защиты информации криптографией предполагают, что отправитель и адресат сообщения - единственные лица, которые могут знать ключ, и компрометация его будет затрагивать взаимодействие только этих двух пользователей информационной системы.

Проблемой организационной защиты информации в этом случае будет актуальна для любой криптосистемы, которая пытается добиться цели защиты информации или защиты информации в Интернете, ведь симметричные ключи необходимо распространять между пользователями безопасно, то есть, необходимо, чтобы защита информации в компьютерных сетях, где передаются ключи, была на высоком уровне.

Любой симметричный алгоритм шифрования криптосистемы программно аппаратного средства защиты информации использует короткие ключи и производит шифрование очень быстро, не смотря на большие объемы данных, что удовлетворяет цели защиты информации.

Средства защиты компьютерной информации на основе криптосистемы должны использовать симметричные системы работы с ключами в следующем порядке:

· Работа информационной безопасности начинается с того, что сначала защита информации создает, распространяет и сохраняет симметричный ключ организационной защиты информации;

· Далее специалист по защите информации или отправитель системы защиты информации в компьютерных сетях создает электронную подпись с помощью хэш-функции текста и добавления полученной строки хэша к тексту, который должен быть безопасно передан в организации защиты информации;

· Согласно доктрине информационной безопасности, отправитель пользуется быстрым симметричным алгоритмом шифрования в криптографическом средстве защиты информации вместе с симметричным ключом к пакету сообщения и электронной подписью, которая производит аутентификацию пользователя системы шифрования криптографического средства защиты информации;

· Зашифрованное сообщение можно смело передавать даже по незащищенным каналам связи, хотя лучше все-таки это делать в рамках работы информационной безопасности. А вот симметричный ключ в обязательном порядке должен быть передан (согласно доктрине информационной безопасности) по каналам связи в рамках программно аппаратных средств защиты информации;

· В системе информационной безопасности на протяжении истории защиты информации, согласно доктрине информационной безопасности, получатель использует тоже симметричный алгоритм для расшифровки пакета и тот же симметричный ключ, который дает возможность восстановить текст исходного сообщения и расшифровать электронную подпись отправителя в системе защиты информации;

· В системе защиты информации получатель должен теперь отделить электронную подпись от текста сообщения;

· Теперь, полученные ранее и ныне электронные подписи получатель сравнивает, чтобы проверить целостность сообщения и отсутствия в нем искаженных данных, что в сфере информационной безопасности называется целостностью передачи данных.

Открытая асимметричная методология защиты информации.

Зная историю защиты информации, можно понять, что в данной методологии ключи шифрования и расшифровки разные, хотя они создаются вместе. В такой системе защиты информации один ключ распространяется публично, а другой передается тайно, потому что однажды зашифрованные данные одним ключом, могут быть расшифрованы только другим.

Все асимметричные криптографические средства защиты информации являются целевым объектом атак взломщиком, действующим в сфере информационной безопасности путем прямого перебора ключей. Поэтому в такой информационной безопасности личности или информационно психологической безопасности используются длинные ключи, чтобы сделать процесс перебора ключей настолько длительным процессом, что взлом системы информационной безопасности потеряет какой-либо смысл.

Совершенно не секрет даже для того, кто делает курсовую защиту информации, что для того чтобы избежать медлительности алгоритмов асимметричного шифрования создается временный симметричный ключ для каждого сообщения, а затем только он один шифруется асимметричными алгоритмами.

Системы информационно психологической безопасности и информационной безопасности личности используют следующий порядок пользования асимметричными ключами:

· В сфере информационной безопасности создаются и открыто распространяются асимметричные открытые ключи. В системе информационной безопасности личности секретный асимметричный ключ отправляется его владельцу, а открытый асимметричный ключ хранится в БД и администрируется центром выдачи сертификатов системы работы защиты информации, что контролирует специалист по защите информации. Затем, информационная безопасность, скачать бесплатно которую невозможно нигде, подразумевает, что оба пользователя должны верить, что в такой системе информационной безопасности производится безопасное создание, администрирование и распределение ключей, которыми пользуется вся организация защиты информации. Даже более того, если на каждом этапе работы защиты информации, согласно основам защиты информации, каждый шаг выполняется разными лицами, то получатель секретного сообщения должен верить, что создатель ключей уничтожил их копию и больше никому данные ключи не предоставил для того, чтобы кто-либо еще мог скачать защиту информации, передаваемой в системе средств защиты информации. Так действует любой специалист по защите информации.

· Далее основы защиты информации предусматривают, что создается электронная подпись текста, и полученное значение шифруется асимметричным алгоритмом. Затем все те же основы защиты информации предполагают, секретный ключ отправителя хранится в строке символов и она добавляется к тексту, который будет передаваться в системе защиты информации и информационной безопасности, потому что электронную подпись в защиту информации и информационной безопасности может создать электронную подпись!

· Затем системы и средства защиты информации решают проблему передачи сеансового ключа получателю.

· Далее в системе средств защиты информации отправитель должен получить асимметричный открытый ключ центра выдачи сертификатов организации и технологии защиты информации. В данной организации и технологии защиты информации перехват нешифрованных запросов на получение открытого ключа - наиболее распространенная атака взломщиков. Именно поэтому в организации и технологии защиты информации может быть реализована система подтверждающих подлинность открытого ключа сертификатов.

Таким образом, алгоритмы шифрования предполагают использование ключей, что позволяет на 100% защитить данные от тех пользователей, которым ключ неизвестен.

Защита информации в локальных сетях и технологии защиты информации наряду с конфиденциальностью обязаны обеспечивать и целостность хранения информации. То есть, защита информации в локальных сетях должна передавать данные таким образом, чтобы данные сохраняли неизменность в процессе передачи и хранения.

Для того чтобы информационная безопасность информации обеспечивала целостность хранения и передачи данных необходима разработка инструментов, обнаруживающих любые искажения исходных данных, для чего к исходной информации придается избыточность.

Информационная безопасность в России с криптографией решает вопрос целостности путем добавления некой контрольной суммы или проверочной комбинации для вычисления целостности данных. Таким образом, снова модель информационной безопасности является криптографической - зависящей от ключа. По оценке информационной безопасности, основанной на криптографии, зависимость возможности прочтения данных от секретного ключа является наиболее надежным инструментом и даже используется в системах информационной безопасности государства.

Как правило, аудит информационной безопасности предприятия, например, информационной безопасности банков, обращает особое внимание на вероятность успешно навязывать искаженную информацию, а криптографическая защита информации позволяет свести эту вероятность к ничтожно малому уровню. Подобная служба информационной безопасности данную вероятность называет мерой имитостойкости шифра, или способностью зашифрованных данных противостоять атаке взломщика.

Защита информации от вирусов или системы защиты экономической информации в обязательном порядке должны поддерживать установление подлинности пользователя для того, чтобы идентифицировать регламентированного пользователя системы и не допустить проникновения в систему злоумышленника.

Проверка и подтверждение подлинности пользовательских данных во всех сферах информационного взаимодействия - важная составная проблема обеспечения достоверности любой получаемой информации и системы защиты информации на предприятии.

Информационная безопасность банков особенно остро относится к проблеме недоверия взаимодействующих друг с другом сторон, где в понятие информационной безопасности ИС включается не только внешняя угроза с третьей стороны, но и угроза информационной безопасности (лекции) со стороны пользователей.

Цифровая подпись

информационный безопасность защита несанкционированный

Иногда пользователи ИС хотят отказаться от ранее принятых обязательств и пытаются изменить ранее созданные данные или документы. Доктрина информационной безопасности РФ учитывает это и пресекает подобные попытки.

Защита конфиденциальной информации с использованием единого ключа невозможно в ситуации, когда один пользователь не доверяет другому, ведь отправитель может потом отказаться от того, что сообщение вообще передавалось. Далее, не смотря на защиту конфиденциальной информации, второй пользователь может модифицировать данные и приписать авторство другому пользователю системы. Естественно, что, какой бы не была программная защита информации или инженерная защита информации, истина установлена быть не может в данном споре.

Цифровая подпись в такой системе защиты информации в компьютерных системах является панацеей проблемы авторства. Защита информации в компьютерных системах с цифровой подписью содержит в себе 2 алгоритма: для вычисления подписи и для ее проверки. Первый алгоритм может быть выполнен лишь автором, а второй - находится в общем доступе для того, чтобы каждый мог в любой момент проверить правильность цифровой подписи.

Криптографические средства - это специальные математические и алгоритмические средства защиты информации, передаваемой по системам и сетям связи, хранимой и обрабатываемой на ЭВМ с использованием разнообразных методов шифрования.
Техническая защита информации путем ее преобразования, исключающего ее прочтение посторонними лицами, волновала человека с давних времен. Криптография должна обеспечивать такой уровень секретности, чтобы можно было надежно защитить критическую информацию от расшифровки крупными организациями - такими, как мафия, транснациональные корпорации и крупные государства. Криптография в прошлом использовалась лишь в военных целях. Однако сейчас, со становлением информационного общества, она становится инструментом для обеспечения конфиденциальности, доверия, авторизации, электронных платежей, корпоративной безопасности и бесчисленного множества других важных вещей. Почему проблема использования криптографических методов стала в настоящий момент особо актуальна?
С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.
С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем, еще недавно считавшихся практически не раскрываемыми.
Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.
Криптография занимается поиском и исследованием математических методов преобразования информации.
Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.
Современная криптография включает в себя 4 крупных раздела.



· Симметричные криптосистемы.

· Криптосистемы с открытым ключом.

· Системы электронной подписи.

· Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.


Терминология.
Криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.
В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите. Под этими терминами понимается следующее.
Алфавит - конечное множество используемых для кодирования информации знаков.
Текст - упорядоченный набор из элементов алфавита.
Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом.
Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.
Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.
Криптографическая система представляет собой семейство Т [Т1, Т2, ..., Тк] преобразований открытого текста. Члены этого семейства индексируются, или обозначаются символом «к»; параметр к является ключом. Пространство ключей К - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.
Криптосистемы разделяются на симметричные и с открытым ключом.
В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.
В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.
Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.
Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.
Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т. е. криптоанализу).
Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.
Наиболее простой критерий такой эффективности - вероятность раскрытия ключа или мощность множества ключей (М). По сути, это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей.
Однако этот критерий не учитывает других важных требований к криптосистемам:

· невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры;

· совершенство используемых протоколов защиты;

· минимальный объем применяемой ключевой информации;

· минимальная сложность реализации (в количестве машинных операций), ее стоимость;

· высокая оперативность.

Часто более эффективным при выборе и оценке криптографической системы является применение экспертных оценок и имитационное моделирование.
В любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в ИС информации.

Такое деление средств защиты информации (техническая защита информации ), достаточно условно, так как на практике очень часто они взаимодействуют и реализуются в комплексе в виде программно - аппаратных модулей с широким использованием алгоритмов закрытия информации.


Заключение

В данной курсовой работе, я рассмотрел локально вычислительную сеть Администрации, и сделал выводы, что для полной защиты информации необходимо применять все средства защиты, что бы минимизировать потерю той или иной информации.

В результате проделанной организации работы: компьютеризация рабочих мест с объединением их в локальную вычислительную сеть, с наличием сервера и доступом к сети Интернет. Выполнение данной работы обеспечит наиболее скоростную и производительную работу рабочего персонала.

Задачи, которые ставились при получении задачи, на мой взгляд, достигнуты. Схема локальной вычислительной сети Администрации приведена в Приложении Б.


Список литературы.

1. ГОСТ Р 54101-2010 «Средства автоматизации и систем управления. Средства и системы обеспечения безопасности. Техническое обслуживание и текущий ремонт»

2. Организационная защита информации: учебное пособие для вузов Аверченков В.И., Рытов М.Ю. 2011 год

3. Халяпин Д.Б., Ярочкин В.И. Основы защиты информации.-М.:ИПКИР,1994

4. Хорошко В.А., Чекатков А.А. Методы и средства защиты информации(под редакцией Ковтанюка) К.: Издательство Юниор, 2003г.-504с.

5. Аппаратные средства и сети ЭВМ Илюхин Б.В. 2005

6. Ярочкин В.И. Информационная безопасность: Учебник для студентов вузов.-М.:Академический Проект!?! Фонд "Мир",2003.-640с.

7. http://habrahabr.ru

8. http://www.intel.com/ru/update/contents/st08031.htm

9. http://securitypolicy.ru

10. http://network.xsp.ru/5_6.php


Примечание А.

Примечание Б.


К средствам криптографической защиты информации (СКЗИ) относятся аппаратные, программно-аппаратные и программные средства, реализующие криптографические алгоритмы преобразования информации с целью:

Защиты информации при ее обработке, хранении и передаче по транспортной среде АС;

Обеспечения достоверности и целостности информации (в том числе с использованием алгоритмов цифровой подписи) при ее обработке, хранении и передаче по транспортной среде АС;

Выработки информации, используемой для идентификации и аутентификации субъектов, пользователей и устройств;

Выработки информации, используемой для защиты аутентифицирующих элементов защищенной АС при их выработке, хранении, обработке и передаче.

Предполагается, что СКЗИ используются в некоторой АС (в ряде источников - информационно-телекоммуникационной системе или сети связи), совместно с механизмами реализации и гарантирования политики безопасности.

Криптографическое преобразование обладает рядом существенных особенностей:

В СКЗИ реализован некоторый алгоритм преобразования информации (шифрование, электронная цифровая подпись, контроль целостности)

Входные и выходные аргументы криптографического преобразования присутствуют в АС в некоторой материальной форме (объекты АС)

СКЗИ для работы использует некоторую конфиденциальную информацию (ключи)

Алгоритм криптографического преобразования реализован в виде некоторого материального объекта, взаимодействующего с окружающей средой (в том числе с субъектами и объектами защищенной АС).

Таким образом, роль СКЗИ в защищённой АС - преобразование объектов. В каждом конкретном случае указанное преобразование имеет особенности. Так, процедура зашифрования использует как входные параметры объект - открытый текст и объект - ключ, результатом преобразования является объект - шифрованный текст; наоборот, процедура расшифрования использует как входные параметры шифрованный текст и ключ; процедура простановки цифровой подписи использует как входные параметры объект - сообщение и объект - секретный ключ подписи, результатом работы цифровой подписи является объект - подпись, как правило, интегрированный в объект - сообщение. Можно говорить о том, что СКЗИ производит защиту объектов на семантическом уровне. В то же время объекты - параметры криптографического преобразования являются полноценными объектами АС и могут быть объектами некоторой политики безопасности (например, ключи шифрования могут и должны быть защищены от НСД, открытые ключи для проверки цифровой подписиот изменений). Итак, СКЗИ в составе защищенных АС имеют конкретную реализацию - это может быть отдельное специализированное устройство, встраиваемое в компьютер, либо специализированная программа. Существенно важными являются следующие моменты:

СКЗИ обменивается информацией с внешней средой, а именно: в него вводятся ключи, открытый текст при шифровании

СКЗИ в случае аппаратной реализации использует элементную базу ограниченной надежности (т.е. в деталях, составляющих СКЗИ, возможны неисправности или отказы)

СКЗИ в случае программной реализации выполняется на процессоре ограниченной надежности и в программной среде, содержащей посторонние программы, которые могут повлиять на различные этапы его работы

СКЗИ хранится на материальном носителе (в случае программной реализации) и может быть при хранении преднамеренно или случайно искажено

СКЗИ взаимодействует с внешней средой косвенным образом (питается от электросети, излучает электромагнитные поля)

СКЗИ изготавливает или/и использует человек, могущий допустить ошибки (преднамеренные или случайные) при разработке и эксплуатации

Существующие средства защиты данных в телекоммуникационных сетях можно разделить на две группы по принципу построения ключевой системы и системы аутентификации. К первой группе отнесем средства, использующие для построения ключевой системы и системы аутентификации симметричные криптоалгоритмы, ко второй - асимметричные.

Проведем сравнительный анализ этих систем. Готовое к передаче информационное сообщение, первоначально открытое и незащищенное, зашифровывается и тем самым преобразуется в шифрограмму, т. е. в закрытые текст или графическое изображение документа. В таком виде сообщение передается по каналу связи, даже и не защищенному. Санкционированный пользователь после получения сообщения дешифрует его (т. е. раскрывает) посредством обратного преобразования криптограммы, вследствие чего получается исходный, открытый вид сообщения, доступный для восприятия санкционированным пользователям. Методу преобразования в криптографической системе соответствует использование специального алгоритма. Действие такого алгоритма запускается уникальным числом (последовательностью бит), обычно называемым шифрующим ключом.

Для большинства систем схема генератора ключа может представлять собой набор инструкций и команд либо узел аппаратуры, либо компьютерную программу, либо все это вместе, но в любом случае процесс шифрования (дешифрования) реализуется только этим специальным ключом. Чтобы обмен зашифрованными данными проходил успешно, как отправителю, так и получателю, необходимо знать правильную ключевую установку и хранить ее в тайне. Стойкость любой системы закрытой связи определяется степенью секретности используемого в ней ключа. Тем не менее, этот ключ должен быть известен другим пользователям сети, чтобы они могли свободно обмениваться зашифрованными сообщениями. В этом смысле криптографические системы также помогают решить проблему аутентификации (установления подлинности) принятой информации. Взломщик в случае перехвата сообщения будет иметь дело только с зашифрованным текстом, а истинный получатель, принимая сообщения, закрытые известным ему и отправителю ключом, будет надежно защищен от возможной дезинформации. Кроме того, существует возможность шифрования информации и более простым способом - с использованием генератора псевдослучайных чисел. Использование генератора псевдослучайных чисел заключается в генерации гаммы шифра с помощью генератора псевдослучайных чисел при определенном ключе и наложении полученной гаммы на открытые данные обратимым способом. Этот метод криптографической защиты реализуется достаточно легко и обеспечивает довольно высокую скорость шифрования, однако недостаточно стоек к дешифрованию.

Для классической криптографии характерно использование одной секретной единицы - ключа, который позволяет отправителю зашифровать сообщение, а получателю расшифровать его. В случае шифрования данных, хранимых на магнитных или иных носителях информации, ключ позволяет зашифровать информацию при записи на носитель и расшифровать при чтении с него.

«Организационно-правовые методы информационной безопасности»

Основные нормативные руководящие документы, касающиеся государственной тайны, нормативно-справочные документы

На сегодняшний день в нашей стране создана стабильная законодательная основа в области защиты информации. Основополагающим законом можно назвать Федеральный закон РФ «О информации, информационных технологиях и о защите информации». «Государственное регулирование отношений в сфере защиты информации осуществляется путем установления требований о защите информации, а также ответственности за нарушение законодательства Российской Федерации об информации, информационных технологиях и о защите информации».Так же Закон устанавливает обязанности обладателей информации и операторов информационных систем.

Что касается «кодифицированного» регулирования обеспечения информационной безопасности, то нормы Кодекса об административных правонарушениях РФ и Уголовного кодекса РФ, так же содержат необходимые статьи. В ст. 13.12 КоАП РФ говориться о нарушении правил защиты информации. Так же ст. 13.13, предусматривающая наказание за незаконную деятельность в области защиты информации. И ст. 13.14. в которой предусматривается наказание за разглашение информации с ограниченным доступом. Статья 183. УК РФ предусматривает наказание за незаконные получение и разглашение сведений, составляющих коммерческую, налоговую или банковскую тайну.

Федеральным законом «Об информации, информатизации и защите информации» определено, что государственные информационные ресурсы Российской Федерации являются открытыми и общедоступными. Исключение составляет документированная информация, отнесенная законом к категории ограниченного доступа.

Понятие государственной тайны определено в Законе «О государственной тайне» как «защищаемые государством сведения в области его военной, внешнеполитической, экономической, разведывательной, контрразведывательной и оперативно-розыскной деятельности, распространение которых может нанести ущерб безопасности Российской Федерации». Таким образом, исходя из баланса интересов государства, общества и граждан, область применения Закона ограничена определенными видами деятельности: военной, внешнеполитической, экономической, разведывательной, контрразведывательной и оперативно-розыскной.

Закон определил, что основным критерием является принадлежность засекречиваемых сведений государству.

Закон также закрепил создание ряда органов в области защиты государственной тайны, в частности, межведомственной комиссии по защите государственной тайны, ввел институт должностных лиц, наделенных полномочиями по отнесению сведений к государственной тайне, с одновременным возложением на них персональной ответственности за деятельность по защите государственной тайны в сфере их ведения.

Общая организация и координация работ в стране по защите информации, обрабатываемой техническими средствами, осуществляется коллегиальным органом – Федеральной службой по техническому и экспортному контролю (ФСТЭК) России при Президенте Российской Федерации, которая осуществляет контроль за обеспечением в органах государственного управления и на предприятиях, ведущих работы по оборонной и другой секретной тематики.

Назначение и задачи в сфере обеспечения информационной безопасности на уровне государства

Государственная политика обеспечения информационной безопасности Российской Федерации определяет основные направления деятельности федеральных органов государственной власти и органов государственной власти субъектов Российской Федерации в этой области, порядок закрепления их обязанностей по защите интересов Российской Федерации в информационной сфере в рамках направлений их деятельности и базируется на соблюдении баланса интересов личности, общества и государства в информационной сфере. Государственная политика обеспечения информационной безопасности Российской Федерации основывается на следующих основных принципах: соблюдение Конституции Российской Федерации, законодательства Российской Федерации, общепризнанных принципов и норм международного права при осуществлении деятельности по обеспечению информационной безопасности Российской Федерации; открытость в реализации функций федеральных органов государственной власти, органов государственной власти субъектов Российской Федерации и общественных объединений, предусматривающая информирование общества об их деятельности с учетом ограничений, установленных законодательством Российской Федерации; правовое равенство всех участников процесса информационного взаимодействия вне зависимости от их политического, социального и экономического статуса, основывающееся на конституционном праве граждан на свободный поиск, получение, передачу, производство и распространение информации любым законным способом; приоритетное развитие отечественных современных информационных и телекоммуникационных технологий, производство технических и программных средств, способных обеспечить совершенствование национальных телекоммуникационных сетей, их подключение к глобальным информационным сетям в целях соблюдения жизненно важных интересов Российской Федерации.

Государство в процессе реализации своих функций по обеспечению информационной безопасности Российской Федерации: проводит объективный и всесторонний анализ и прогнозирование угроз информационной безопасности Российской Федерации, разрабатывает меры по ее обеспечению; организует работу законодательных (представительных) и исполнительных органов государственной власти Российской Федерации по реализации комплекса мер, направленных на предотвращение, отражение и нейтрализацию угроз информационной безопасности Российской Федерации; поддерживает деятельность общественных объединений, направленную на объективное информирование населения о социально значимых явлениях общественной жизни, защиту общества от искаженной и недостоверной информации; осуществляет контроль за разработкой, созданием, развитием, использованием, экспортом и импортом средств защиты информации посредством их сертификации и лицензирования деятельности в области защиты информации; проводит необходимую протекционистскую политику в отношении производителей средств информатизации и защиты информации на территории Российской Федерации и принимает меры по защите внутреннего рынка от проникновения на него некачественных средств информатизации и информационных продуктов; способствует предоставлению физическим и юридическим лицам доступа к мировым информационным ресурсам, глобальным информационным сетям; формулирует и реализует государственную информационную политику России; организует разработку федеральной программы обеспечения информационной безопасности Российской Федерации, объединяющей усилия государственных и негосударственных организаций в данной области; способствует интернационализации глобальных информационных сетей и систем, а также вхождению России в мировое информационное сообщество на условиях равноправного партнерства.

Совершенствование правовых механизмов регулирования общественных отношений, возникающих в информационной сфере, является приоритетным направлением государственной политики в области обеспечения информационной безопасности Российской Федерации.

Это предполагает: оценку эффективности применения действующих законодательных и иных нормативных правовых актов в информационной сфере и выработку программы их совершенствования; создание организационно-правовых механизмов обеспечения информационной безопасности; определение правового статуса всех субъектов отношений в информационной сфере, включая пользователей информационных и телекоммуникационных систем, и установление их ответственности за соблюдение законодательства Российской Федерации в данной сфере; создание системы сбора и анализа данных об источниках угроз информационной безопасности Российской Федерации, а также о последствиях их осуществления; разработку нормативных правовых актов, определяющих организацию следствия и процедуру судебного разбирательства по фактам противоправных действий в информационной сфере, а также порядок ликвидации последствий этих противоправных действий; разработку составов правонарушений с учетом специфики уголовной, гражданской, административной, дисциплинарной ответственности и включение соответствующих правовых норм в уголовный, гражданский, административный и трудовой кодексы, в законодательство Российской Федерации о государственной службе; совершенствование системы подготовки кадров, используемых в области обеспечения информационной безопасности Российской Федерации.

Правовое обеспечение информационной безопасности Российской Федерации должно базироваться, прежде всего, на соблюдении принципов законности, баланса интересов граждан, общества и государства в информационной сфере. Соблюдение принципа законности требует от федеральных органов государственной власти и органов государственной власти субъектов Российской Федерации при решении возникающих в информационной сфере конфликтов неукоснительно руководствоваться законодательными и иными нормативными правовыми актами, регулирующими отношения в этой сфере. Соблюдение принципа баланса интересов граждан, общества и государства в информационной сфере предполагает законодательное закрепление приоритета этих интересов в различных областях жизнедеятельности общества, а также использование форм общественного контроля деятельности федеральных органов государственной власти и органов государственной власти субъектов Российской Федерации. Реализация гарантий конституционных прав и свобод человека и гражданина, касающихся деятельности в информационной сфере, является важнейшей задачей государства в области информационной безопасности. Разработка механизмов правового обеспечения информационной безопасности Российской Федерации включает в себя мероприятия по информатизации правовой сферы в целом. В целях выявления и согласования интересов федеральных органов государственной власти, органов государственной власти субъектов Российской Федерации и других субъектов отношений в информационной сфере, выработки необходимых решений государство поддерживает формирование общественных советов, комитетов и комиссий с широким представительством общественных объединений и содействует организации их эффективной работы.

Особенности сертификации и стандартизации криптографических услуг

Практически во всех странах, обладающих развитыми криптографическими технологиями, разработка СКЗИ относится к сфере государственного регулирования. Государственное регулирование включает, как правило, лицензирование деятельности, связанной с разработкой и эксплуатацией криптографических средств, сертификацию СКЗИ и стандартизацию алгоритмов криптографических преобразований.

Лицензированию подлежат следующие виды деятельности: разработка, производство, проведение сертификационных испытаний, реализация, эксплуатация шифровальных средств, предназначенных для криптографической защиты информации, содержащей сведения, составляющие государственную или иную охраняемую законом тайну, при ее обработке, хранении и передаче по каналам связи, а также предоставление услуг в области шифрования этой информации; разработка, производство, проведение сертификационных испытаний, эксплуатация систем и комплексов телекоммуникаций высших органов государственной власти Российской Федерации; разработка, производство, проведение сертификационных испытаний, реализация, эксплуатация закрытых систем и комплексов телекоммуникаций органов власти субъектов Российской Федерации, центральных органов федеральной исполнительной власти, организаций, предприятий, банков и иных учреждений, расположенных на территории Российской Федерации, независимо от их ведомственной принадлежности и форм собственности (далее - закрытых систем и комплексов телекоммуникаций), предназначенных для передачи информации, составляющей государственную или иную охраняемую законом тайну; проведение сертификационных испытаний, реализация и эксплуатация шифровальных средств, закрытых систем и комплексов телекоммуникаций, предназначенных для обработки информации, не содержащей сведений, составляющих государственную или иную охраняемую законом тайну, при ее обработке, хранении и передаче по каналам связи, а также предоставление услуг в области шифрования этой информации

К шифровальным средствам относятся: реализующие криптографические алгоритмы преобразования информации аппаратные, программные и аппаратно-программные средства, обеспечивающие безопасность информации при ее обработке, хранении и передаче по каналам связи, включая шифровальную технику; реализующие криптографические алгоритмы преобразования информации аппаратные, программные и аппаратно-программные средства защиты от несанкционированного доступа к информации при ее обработке и хранении; реализующие криптографические алгоритмы преобразования информации аппаратные, программные и аппаратно-программные средства защиты от навязывания ложной информации, включая средства имитозащиты и "цифровой подписи"; аппаратные, аппаратно-программные и программные средства для изготовления ключевых документов к шифровальным средствам независимо от вида носителя ключевой информации.

К закрытым системам и комплексам телекоммуникаций относятся системы и комплексы телекоммуникаций, в которых обеспечивается защита информации с использованием шифровальных средств, защищенного оборудования и организационных мер.

Дополнительно лицензированию подлежат следующие виды деятельности: эксплуатация шифровальных средств и/или средств цифровой подписи, а также шифровальных средств для защиты электронных платежей с использованием пластиковых кредитных карточек и смарт – карт; оказание услуг по защите (шифрованию) информации; монтаж, установка, наладка шифровальных средств и/или средств цифровой подписи, шифровальных средств для защиты электронных платежей с использованием пластиковых кредитных карточек и смарт – карт; разработка шифровальных средств и/или средств цифровой подписи, шифровальных средств для защиты электронных платежей с использованием пластиковых кредитных карточек и смарт-карт

Порядок сертификации СКЗИ установлен "Системой сертификации средств криптографической защиты информации РОСС.Р11.0001.030001 Госстандарта России.

Стандартизация алгоритмов криптографических преобразований включает всесторонние исследования и публикацию в виде стандартов элементов криптографических процедур с целью использования разработчиками СКЗИ апробированных криптографически стойких преобразований, обеспечения возможности совместной работы различных СКЗИ, а также возможности тестирования и проверки соответствия реализации СКЗИ заданному стандартом алгоритму. В России приняты следующие стандарты - алгоритм криптографического преобразования 28147-89, алгоритмы хеширования, простановки и проверки цифровой подписи Р34.10.94 и Р34.11.94. Из зарубежных стандартов широко известны и применяются алгоритмы шифрования DES, RC2, RC4, алгоритмы хеширования МD2, МD4 и МD5, алгоритмы простановки и проверки цифровой подписи DSS и RSA.

Законодательная база информационной безопасности

Основные понятия, требования, методы и средства проектирования и оценки системы информационной безопасности для информационных систем (ИС) отражены в следующих основополагающих документах:

"Оранжевая книга" Национального центра защиты компьютеров

"Гармонизированные критерии Европейских стран (ITSEC)";

Концепция защиты от НСД Госкомиссии при Президенте РФ.

Концепция информационной безопасности

Концепция безопасности разрабатываемой системы – "это набор законов, правил и норм поведения, определяющих, как организация обрабатывает, защищает и распространяет информацию. В частности, правила определяют, в каких случаях пользователь имеет право оперировать с определенными наборами данных. Чем надежнее система, тем строже и многообразнее должна быть концепция безопасности. В зависимости от сформулированной концепции можно выбирать конкретные механизмы, обеспечивающие безопасность системы. Концепция безопасности – это активный компонент защиты, включающий в себя анализ возможных угроз и выбор мер противодействия".

Концепция безопасности разрабатываемой системы согласно "Оранжевой книге" должна включать в себя следующие элементы:

Произвольное управление доступом;

Безопасность повторного использования объектов;

Метки безопасности;

Принудительное управление доступом.

Рассмотрим содержание перечисленных элементов.

Произвольное управление доступом – это метод ограничения доступа к объектам, основанный на учете личности субъекта или группы, в которую субъект входит. Произвольность управления состоит в том, что некоторое лицо (обычно владелец объекта) может по своему усмотрению давать другим субъектам или отбирать у них права доступа к объекту.

Главное достоинство произвольного управления доступом – гибкость, главные недостатки – рассредоточенность управления и сложность централизованного контроля, а также оторванность прав доступа от данных, что позволяет копировать секретную информацию в общедоступные файлы.

Безопасность повторного использования объектов – важное на практике дополнение средств управления доступом, предохраняющее от случайного или преднамеренного извлечения секретной информации из "мусора". Безопасность повторного использования должна гарантироваться для областей оперативной памяти (в частности, для буферов с образами экрана, расшифрованными паролями и т.п.), для дисковых блоков и магнитных носителей в целом.

Метки безопасности ассоциируются с субъектами и объектами для реализации принудительного управления доступом. Метка субъекта описывает его благонадежность, метка объекта – степень закрытости содержащейся в нем информации. Согласно "Оранжевой книге" метки безопасности состоят из двух частей – уровня секретности и списка категорий. Главная проблема, которую необходимо решать в связи с метками, – это обеспечение их целостности. Во-первых, не должно быть непомеченных субъектов и объектов, иначе в меточной безопасности появятся легко используемые бреши. Во-вторых, при любых операциях с данными метки должны оставаться правильными. Одним из средств обеспечения целостности меток безопасности является разделение устройств на многоуровневые и одноуровневые. На многоуровневых устройствах может храниться информация разного уровня секретности (точнее, лежащая в определенном диапазоне уровней). Одноуровневое устройство можно рассматривать как вырожденный случай многоуровневого, когда допустимый диапазон состоит из одного уровня. Зная уровень устройства, система может решить, допустимо ли записывать на него информацию с определенной меткой.

Принудительное управление доступом основано на сопоставлении меток безопасности субъекта и объекта. Этот способ управления доступом называется принудительным, поскольку он не зависит от воли субъектов (даже системных администраторов). Принудительное управление доступом реализовано во многих вариантах операционных систем и СУБД, отличающихся повышенными мерами безопасности.

Средства криптографической защиты информации, или сокращенно СКЗИ, используются для обеспечения всесторонней защиты данных, которые передаются по линиям связи. Для этого необходимо соблюсти авторизацию и защиту электронной подписи, аутентификацию сообщающихся сторон с использованием протоколов TLS и IPSec, а также защиту самого канала связи при необходимости.

В России использование криптографических средств защиты информации по большей части засекречено, поэтому общедоступной информации касательно этой темы мало.

Методы, применяемые в СКЗИ

  • Авторизация данных и обеспечение сохранности их юридической значимости при передаче или хранении. Для этого применяют алгоритмы создания электронной подписи и ее проверки в соответствии с установленным регламентом RFC 4357 и используют сертификаты по стандарту X.509.
  • Защита конфиденциальности данных и контроль их целостности. Используется асимметричное шифрование и имитозащита, то есть противодействие подмене данных. Соблюдается ГОСТ Р 34.12-2015.
  • Защита системного и прикладного ПО. Отслеживание несанкционированных изменений или неверного функционирования.
  • Управление наиболее важными элементами системы в строгом соответствии с принятым регламентом.
  • Аутентификация сторон, обменивающихся данными.
  • Защита соединения с использованием протокола TLS.
  • Защита IP-соединений при помощи протоколов IKE, ESP, AH.

Подробным образом методы описаны в следующих документах: RFC 4357, RFC 4490, RFC 4491.

Механизмы СКЗИ для информационной защиты

  1. Защита конфиденциальности хранимой или передаваемой информации происходит применением алгоритмов шифрования.
  2. При установлении связи идентификация обеспечивается средствами электронной подписи при их использовании во время аутентификации (по рекомендации X.509).
  3. Цифровой документооборот также защищается средствами электронной подписи совместно с защитой от навязывания или повтора, при этом осуществляется контроль достоверности ключей, используемых для проверки электронных подписей.
  4. Целостность информации обеспечивается средствами цифровой подписи.
  5. Использование функций асимметричного шифрования позволяет защитить данные. Помимо этого для проверки целостности данных могут быть использованы функции хеширования или алгоритмы имитозащиты. Однако эти способы не поддерживают определения авторства документа.
  6. Защита от повторов происходит криптографическими функциями электронной подписи для шифрования или имитозащиты. При этом к каждой сетевой сессии добавляется уникальный идентификатор, достаточно длинный, чтобы исключить его случайное совпадение, и реализуется проверка принимающей стороной.
  7. Защита от навязывания, то есть от проникновения в связь со стороны, обеспечивается средствами электронной подписи.
  8. Прочая защита - против закладок, вирусов, модификаций операционной системы и т. д. - обеспечивается с помощью различных криптографических средств, протоколов безопасности, антивирусных ПО и организационных мероприятий.

Как можно заметить, алгоритмы электронной подписи являются основополагающей частью средства криптографической защиты информации. Они будут рассмотрены ниже.

Требования при использовании СКЗИ

СКЗИ нацелено на защиту (проверкой электронной подписи) открытых данных в различных информационных системах общего использования и обеспечения их конфиденциальности (проверкой электронной подписи, имитозащитой, шифрованием, проверкой хеша) в корпоративных сетях.

Персональное средство криптографической защиты информации используется для охраны персональных данных пользователя. Однако следует особо выделить информацию, касающуюся государственной тайны. По закону СКЗИ не может быть использовано для работы с ней.

Важно: перед установкой СКЗИ первым делом следует проверить сам пакет обеспечения СКЗИ. Это первый шаг. Как правило, целостность пакета установки проверяется путем сравнения контрольных сумм, полученных от производителя.

После установки следует определиться с уровнем угрозы, исходя из чего можно определить необходимые для применения виды СКЗИ: программные, аппаратные и аппаратно-программные. Также следует учитывать, что при организации некоторых СКЗИ необходимо учитывать размещение системы.

Классы защиты

Согласно приказу ФСБ России от 10.07.14 под номером 378, регламентирующему применение криптографических средств защиты информации и персональных данных, определены шесть классов: КС1, КС2, КС3, КВ1, КВ2, КА1. Класс защиты для той или иной системы определяется из анализа данных о модели нарушителя, то есть из оценки возможных способов взлома системы. Защита при этом строится из программных и аппаратных средств криптографической защиты информации.

АУ (актуальные угрозы), как видно из таблицы, бывают 3 типов:

  1. Угрозы первого типа связаны с недокументированными возможностями в системном ПО, используемом в информационной системе.
  2. Угрозы второго типа связаны с недокументированными возможностями в прикладном ПО, используемом в информационной системе.
  3. Угрозой третьего типа называются все остальные.

Недокументированные возможности - это функции и свойства программного обеспечения, которые не описаны в официальной документации или не соответствуют ей. То есть их использование может повышать риск нарушения конфиденциальности или целостности информации.

Для ясности рассмотрим модели нарушителей, для перехвата которых нужен тот или иной класс средств криптографической защиты информации:

  • КС1 - нарушитель действует извне, без помощников внутри системы.
  • КС2 - внутренний нарушитель, но не имеющий доступа к СКЗИ.
  • КС3 - внутренний нарушитель, который является пользователем СКЗИ.
  • КВ1 - нарушитель, который привлекает сторонние ресурсы, например специалистов по СКЗИ.
  • КВ2 - нарушитель, за действиями которого стоит институт или лаборатория, работающая в области изучения и разработки СКЗИ.
  • КА1 - специальные службы государств.

Таким образом, КС1 можно назвать базовым классом защиты. Соответственно, чем выше класс защиты, тем меньше специалистов, способных его обеспечивать. Например, в России, по данным за 2013 год, существовало всего 6 организаций, имеющих сертификат от ФСБ и способных обеспечивать защиту класса КА1.

Используемые алгоритмы

Рассмотрим основные алгоритмы, используемые в средствах криптографической защиты информации:

  • ГОСТ Р 34.10-2001 и обновленный ГОСТ Р 34.10-2012 - алгоритмы создания и проверки электронной подписи.
  • ГОСТ Р 34.11-94 и последний ГОСТ Р 34.11-2012 - алгоритмы создания хеш-функций.
  • ГОСТ 28147-89 и более новый ГОСТ Р 34.12-2015 - реализация алгоритмов шифрования и имитозащиты данных.
  • Дополнительные криптографические алгоритмы находятся в документе RFC 4357.

Электронная подпись

Применение средства криптографической защиты информации невозможно представить без использования алгоритмов электронной подписи, которые набирают все большую популярность.

Электронная подпись - это специальная часть документа, созданная криптографическими преобразованиями. Ее основной задачей являются выявление несанкционированного изменения и определение авторства.

Сертификат электронной подписи - это отдельный документ, который доказывает подлинность и принадлежность электронной подписи своему владельцу по открытому ключу. Выдача сертификата происходит удостоверяющими центрами.

Владелец сертификата электронной подписи - это лицо, на имя которого регистрируется сертификат. Он связан с двумя ключами: открытым и закрытым. Закрытый ключ позволяет создать электронную подпись. Открытый ключ предназначен для проверки подлинности подписи благодаря криптографической связи с закрытым ключом.

Виды электронной подписи

По Федеральному закону № 63 электронная подпись делится на 3 вида:

  • обычная электронная подпись;
  • неквалифицированная электронная подпись;
  • квалифицированная электронная подпись.

Простая ЭП создается за счет паролей, наложенных на открытие и просмотр данных, или подобных средств, косвенно подтверждающих владельца.

Неквалифицированная ЭП создается с помощью криптографических преобразований данных при помощи закрытого ключа. Благодаря этому можно подтвердить лицо, подписавшее документ, и установить факт внесения в данные несанкционированных изменений.

Квалифицированная и неквалифицированная подписи отличаются только тем, что в первом случае сертификат на ЭП должен быть выдан сертифицированным ФСБ удостоверяющим центром.

Область использования электронной подписи

В таблице ниже рассмотрены сферы применения ЭП.

Активнее всего технологии ЭП применяются в обмене документами. Во внутреннем документообороте ЭП выступает в роли утверждения документов, то есть как личная подпись или печать. В случае внешнего документооборота наличие ЭП критично, так как является юридическим подтверждением. Стоит также отметить, что документы, подписанные ЭП, способны храниться бесконечно долго и не утрачивать своей юридической значимости из-за таких факторов, как стирающиеся подписи, испорченная бумага и т. д.

Отчетность перед контролирующими органами - это еще одна сфера, в которой наращивается электронный документооборот. Многие компании и организации уже оценили удобство работы в таком формате.

По закону Российской Федерации каждый гражданин вправе пользоваться ЭП при использовании госуслуг (например, подписание электронного заявления для органов власти).

Онлайн-торги - еще одна интересная сфера, в которой активно применяется электронная подпись. Она является подтверждением того факта, что в торгах участвует реальный человек и его предложения могут рассматриваться как достоверные. Также важным является то, что любой заключенный контракт при помощи ЭП приобретает юридическую силу.

Алгоритмы электронной подписи

  • Full Domain Hash (FDH) и Public Key Cryptography Standards (PKCS). Последнее представляет собой целую группу стандартных алгоритмов для различных ситуаций.
  • DSA и ECDSA - стандарты создания электронной подписи в США.
  • ГОСТ Р 34.10-2012 - стандарт создания ЭП в РФ. Данный стандарт заменил собой ГОСТ Р 34.10-2001, действие которого официально прекратилось после 31 декабря 2017 года.
  • Евразийский союз пользуется стандартами, полностью аналогичными российским.
  • СТБ 34.101.45-2013 - белорусский стандарт для цифровой электронной подписи.
  • ДСТУ 4145-2002 - стандарт создания электронной подписи в Украине и множество других.

Стоит также отметить, что алгоритмы создания ЭП имеют различные назначения и цели:

  • Групповая электронная подпись.
  • Одноразовая цифровая подпись.
  • Доверенная ЭП.
  • Квалифицированная и неквалифицированная подпись и пр.
Похожие публикации